Ad
related to: math reflection
Search results
Results from the WOW.Com Content Network
A reflection through an axis. In mathematics, a reflection (also spelled reflexion) [1] is a mapping from a Euclidean space to itself that is an isometry with a hyperplane as the set of fixed points; this set is called the axis (in dimension 2) or plane (in dimension 3) of reflection.
The set of all reflections in lines through the origin and rotations about the origin, together with the operation of composition of reflections and rotations, forms a group. The group has an identity: Rot(0). Every rotation Rot(φ) has an inverse Rot(−φ). Every reflection Ref(θ) is its own inverse. Composition has closure and is ...
In mathematics, reflection through the origin refers to the point reflection of Euclidean space R n across the origin of the Cartesian coordinate system. Reflection through the origin is an orthogonal transformation corresponding to scalar multiplication by − 1 {\displaystyle -1} , and can also be written as − I {\displaystyle -I} , where I ...
In mathematics, a dihedral group is the group of symmetries of a regular polygon, [1] [2] which includes rotations and reflections. Dihedral groups are among the simplest examples of finite groups , and they play an important role in group theory , geometry , and chemistry .
In mathematics, a reflection formula or reflection relation for a function f is a relationship between f(a − x) and f(x).It is a special case of a functional equation.It is common in mathematical literature to use the term "functional equation" for what are specifically reflection formulae.
In geometry, inversive geometry is the study of inversion, ... Let h be the reflection of ray BA in line BC. Then h cuts ray OC in a point A '.
In mathematics, a Coxeter group, named after H. S. M. Coxeter, is an abstract group that admits a formal description in terms of reflections (or kaleidoscopic mirrors). Indeed, the finite Coxeter groups are precisely the finite Euclidean reflection groups ; for example, the symmetry group of each regular polyhedron is a finite Coxeter group.
Weak forms of the reflection principle are theorems of ZF set theory due to Montague (1961), while stronger forms can be new and very powerful axioms for set theory. The name "reflection principle" comes from the fact that properties of the universe of all sets are "reflected" down to a smaller set.
Ad
related to: math reflection