Ads
related to: linear algebra involution function examples questionsteacherspayteachers.com has been visited by 100K+ users in the past month
- Free Resources
Download printables for any topic
at no cost to you. See what's free!
- Try Easel
Level up learning with interactive,
self-grading TPT digital resources.
- Resources on Sale
The materials you need at the best
prices. Shop limited time offers.
- Worksheets
All the printables you need for
math, ELA, science, and much more.
- Free Resources
educator.com has been visited by 10K+ users in the past month
kutasoftware.com has been visited by 10K+ users in the past month
Search results
Results from the WOW.Com Content Network
An involution is a function f : X → X that, when applied twice, brings one back to the starting point. In mathematics, an involution, involutory function, or self-inverse function [1] is a function f that is its own inverse, f(f(x)) = x. for all x in the domain of f. [2] Equivalently, applying f twice produces the original value.
An example from linear algebra is the multiplicative monoid of real square matrices of order n (called the full linear monoid). The map which sends a matrix to its transpose is an involution because the transpose is well defined for any matrix and obeys the law (AB) T = B T A T, which has the same form of interaction with multiplication as ...
An involution is non-defective, and each eigenvalue equals , so an involution diagonalizes to a signature matrix. A normal involution is Hermitian (complex) or symmetric (real) and also unitary (complex) or orthogonal (real). The determinant of an involutory matrix over any field is ±1. [4]
In this example, a self-adjoint morphism is a symmetric relation. The category Cob of cobordisms is a dagger compact category , in particular it possesses a dagger structure. The category Hilb of Hilbert spaces also possesses a dagger structure: Given a bounded linear map f : A → B {\displaystyle f:A\rightarrow B} , the map f † : B → A ...
In terms of linear algebra, assuming the origin is fixed, involutions are exactly the diagonalizable maps with all eigenvalues either 1 or −1. Reflection in a hyperplane has a single −1 eigenvalue (and multiplicity n − 1 {\displaystyle n-1} on the 1 eigenvalue), while point reflection has only the −1 eigenvalue (with multiplicity n ).
A Cartan involution on () is defined by () =, where denotes the transpose matrix of .; The identity map on is an involution. It is the unique Cartan involution of if and only if the Killing form of is negative definite or, equivalently, if and only if is the Lie algebra of a compact semisimple Lie group.
Ads
related to: linear algebra involution function examples questionsteacherspayteachers.com has been visited by 100K+ users in the past month
educator.com has been visited by 10K+ users in the past month
kutasoftware.com has been visited by 10K+ users in the past month