enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Eigenvalues and eigenvectors - Wikipedia

    en.wikipedia.org/wiki/Eigenvalues_and_eigenvectors

    Similarly, the geometric multiplicity of the eigenvalue 3 is 1 because its eigenspace is spanned by just one vector []. The total geometric multiplicity γ A is 2, which is the smallest it could be for a matrix with two distinct eigenvalues. Geometric multiplicities are defined in a later section.

  3. Eigenvalue algorithm - Wikipedia

    en.wikipedia.org/wiki/Eigenvalue_algorithm

    Given an n × n square matrix A of real or complex numbers, an eigenvalue λ and its associated generalized eigenvector v are a pair obeying the relation [1] =,where v is a nonzero n × 1 column vector, I is the n × n identity matrix, k is a positive integer, and both λ and v are allowed to be complex even when A is real.l When k = 1, the vector is called simply an eigenvector, and the pair ...

  4. Spectrum of a matrix - Wikipedia

    en.wikipedia.org/wiki/Spectrum_of_a_matrix

    Thus the elements of the spectrum are precisely the eigenvalues of T, and the multiplicity of an eigenvalue λ in the spectrum equals the dimension of the generalized eigenspace of T for λ (also called the algebraic multiplicity of λ). Now, fix a basis B of V over K and suppose M ∈ Mat K (V) is a matrix.

  5. Rayleigh–Ritz method - Wikipedia

    en.wikipedia.org/wiki/Rayleigh–Ritz_method

    Truncated singular value decomposition (SVD) in numerical linear algebra can also use the Rayleigh–Ritz method to find approximations to left and right singular vectors of the matrix of size in given subspaces by turning the singular value problem into an eigenvalue problem.

  6. Inverse iteration - Wikipedia

    en.wikipedia.org/wiki/Inverse_iteration

    Naively, if at each iteration one solves a linear system, the complexity will be k O(n 3), where k is number of iterations; similarly, calculating the inverse matrix and applying it at each iteration is of complexity k O(n 3). Note, however, that if the eigenvalue estimate remains constant, then we may reduce the complexity to O(n 3) + k O(n 2 ...

  7. Arnoldi iteration - Wikipedia

    en.wikipedia.org/wiki/Arnoldi_iteration

    In numerical linear algebra, the Arnoldi iteration is an eigenvalue algorithm and an important example of an iterative method.Arnoldi finds an approximation to the eigenvalues and eigenvectors of general (possibly non-Hermitian) matrices by constructing an orthonormal basis of the Krylov subspace, which makes it particularly useful when dealing with large sparse matrices.

  8. Eigendecomposition of a matrix - Wikipedia

    en.wikipedia.org/wiki/Eigendecomposition_of_a_matrix

    Let A be a square n × n matrix with n linearly independent eigenvectors q i (where i = 1, ..., n).Then A can be factored as = where Q is the square n × n matrix whose i th column is the eigenvector q i of A, and Λ is the diagonal matrix whose diagonal elements are the corresponding eigenvalues, Λ ii = λ i.

  9. Eigenvalues and eigenvectors of the second derivative

    en.wikipedia.org/wiki/Eigenvalues_and...

    The index j represents the jth eigenvalue or eigenvector and runs from 1 to . Assuming the equation is defined on the domain [,], the following are the eigenvalues and normalized eigenvectors. The eigenvalues are ordered in descending order.