enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. ASME Y14.5 - Wikipedia

    en.wikipedia.org/wiki/ASME_Y14.5

    ASME Y14.5 is a complete definition of Geometric Dimensioning and Tolerancing. It contains 15 sections which cover symbols and datums as well as tolerances of form, orientation, position, profile and runout. [3] It is complemented by ASME Y14.5.1 - Mathematical Definition of Dimensioning and Tolerancing Principles.

  3. Geometric dimensioning and tolerancing - Wikipedia

    en.wikipedia.org/wiki/Geometric_dimensioning_and...

    Example of true position geometric control defined by basic dimensions and datum features. Geometric dimensioning and tolerancing (GD&T) is a system for defining and communicating engineering tolerances via a symbolic language on engineering drawings and computer-generated 3D models that describes a physical object's nominal geometry and the permissible variation thereof.

  4. Engineering tolerance - Wikipedia

    en.wikipedia.org/wiki/Engineering_tolerance

    For example, if a shaft with a nominal diameter of 10 mm is to have a sliding fit within a hole, the shaft might be specified with a tolerance range from 9.964 to 10 mm (i.e., a zero fundamental deviation, but a lower deviation of 0.036 mm) and the hole might be specified with a tolerance range from 10.04 mm to 10.076 mm (0.04 mm fundamental ...

  5. BS 8888 - Wikipedia

    en.wikipedia.org/wiki/BS_8888

    BS 8888 is the British standard developed by the BSI Group for technical product documentation, geometric product specification, geometric tolerance specification and engineering drawings. [ 1 ] History

  6. Tolerance analysis - Wikipedia

    en.wikipedia.org/wiki/Tolerance_analysis

    Tolerance analysis is the general term for activities related to the study of accumulated variation in mechanical parts and assemblies. Its methods may be used on other types of systems subject to accumulated variation, such as mechanical and electrical systems.

  7. Engineering fit - Wikipedia

    en.wikipedia.org/wiki/Engineering_fit

    Engineering fits are generally used as part of geometric dimensioning and tolerancing when a part or assembly is designed. In engineering terms, the "fit" is the clearance between two mating parts, and the size of this clearance determines whether the parts can, at one end of the spectrum, move or rotate independently from each other or, at the other end, are temporarily or permanently joined.

  8. Engineering drawing abbreviations and symbols - Wikipedia

    en.wikipedia.org/wiki/Engineering_drawing...

    Diameter of a circle. In a feature control frame , the ⌀ symbol tells you that the tolerance zone for the geometric tolerance is cylindrical. Abbreviations for "diameter" include ⌀, DIA, and D. D: diameter; delta: Abbreviations for "diameter" include ⌀, DIA, and D. For delta usage, see for example "delta notes". DIA [2] diameter

  9. Limits and fits - Wikipedia

    en.wikipedia.org/wiki/Limits_and_fits

    In mechanical engineering, limits and fits are a set of rules regarding the dimensions and tolerances of mating machined parts if they are to achieve the desired ease of assembly, and security after assembly - sliding fit, interference fit, rotating fit, non-sliding fit, loose fit, etc.