enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Root of unity - Wikipedia

    en.wikipedia.org/wiki/Root_of_unity

    Roots of unity are used in many branches of mathematics, and are especially important in number theory, the theory of group characters, and the discrete Fourier transform. Roots of unity can be defined in any field. If the characteristic of the field is zero, the roots are complex numbers that are also algebraic integers.

  3. Quintic function - Wikipedia

    en.wikipedia.org/wiki/Quintic_function

    An example of a more complicated (although small enough to be written here) solution is the unique real root of x 5 − 5x + 12 = 0. Let a = √ 2 φ −1 , b = √ 2 φ , and c = 4 √ 5 , where φ = ⁠ 1+ √ 5 / 2 ⁠ is the golden ratio .

  4. Complex conjugate root theorem - Wikipedia

    en.wikipedia.org/wiki/Complex_conjugate_root_theorem

    It follows from the present theorem and the fundamental theorem of algebra that if the degree of a real polynomial is odd, it must have at least one real root. [2] This can be proved as follows. Since non-real complex roots come in conjugate pairs, there are an even number of them; But a polynomial of odd degree has an odd number of roots;

  5. Primitive root modulo n - Wikipedia

    en.wikipedia.org/wiki/Primitive_root_modulo_n

    In modular arithmetic, a number g is a primitive root modulo n if every number a coprime to n is congruent to a power of g modulo n. That is, g is a primitive root modulo n if for every integer a coprime to n, there is some integer k for which g k ≡ a (mod n). Such a value k is called the index or discrete logarithm of a to the base g modulo n.

  6. Root of unity modulo n - Wikipedia

    en.wikipedia.org/wiki/Root_of_unity_modulo_n

    In number theory, a kth root of unity modulo n for positive integers k, n ≥ 2, is a root of unity in the ring of integers modulo n; that is, a solution x to the equation (or congruence) (). If k is the smallest such exponent for x , then x is called a primitive k th root of unity modulo n . [ 1 ]

  7. Vieta's formulas - Wikipedia

    en.wikipedia.org/wiki/Vieta's_formulas

    Vieta's formulas are frequently used with polynomials with coefficients in any integral domain R.Then, the quotients / belong to the field of fractions of R (and possibly are in R itself if happens to be invertible in R) and the roots are taken in an algebraically closed extension.

  8. Galois theory - Wikipedia

    en.wikipedia.org/wiki/Galois_theory

    If the polynomial has rational roots, for example x 2 − 4x + 4 = (x − 2) 2, or x 2 − 3x + 2 = (x − 2)(x − 1), then the Galois group is trivial; that is, it contains only the identity permutation. In this example, if A = 2 and B = 1 then A − B = 1 is no longer true when A and B are swapped.

  9. Bisection method - Wikipedia

    en.wikipedia.org/wiki/Bisection_method

    A few steps of the bisection method applied over the starting range [a 1;b 1].The bigger red dot is the root of the function. In mathematics, the bisection method is a root-finding method that applies to any continuous function for which one knows two values with opposite signs.