enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Homotopy - Wikipedia

    en.wikipedia.org/wiki/Homotopy

    A homotopy between two embeddings of the torus into : as "the surface of a doughnut" and as "the surface of a coffee mug".This is also an example of an isotopy.. Formally, a homotopy between two continuous functions f and g from a topological space X to a topological space Y is defined to be a continuous function: [,] from the product of the space X with the unit interval [0, 1] to Y such that ...

  3. Homotopy theory - Wikipedia

    en.wikipedia.org/wiki/Homotopy_theory

    In mathematics, homotopy theory is a systematic study of situations in which maps can come with homotopies between them. It originated as a topic in algebraic topology , but nowadays is learned as an independent discipline.

  4. Timelike homotopy - Wikipedia

    en.wikipedia.org/wiki/Timelike_homotopy

    A timelike homotopy between two timelike curves is a homotopy such that each intermediate curve is timelike. No closed timelike curve (CTC) on a Lorentzian manifold is timelike homotopic to a point (that is, null timelike homotopic); such a manifold is therefore said to be multiply connected by timelike curves (or timelike multiply connected ).

  5. Path (topology) - Wikipedia

    en.wikipedia.org/wiki/Path_(topology)

    A homotopy between two paths. Paths and loops are central subjects of study in the branch of algebraic topology called homotopy theory.A homotopy of paths makes precise the notion of continuously deforming a path while keeping its endpoints fixed.

  6. Homotopy category - Wikipedia

    en.wikipedia.org/wiki/Homotopy_category

    The older definition of the homotopy category hTop, called the naive homotopy category [1] for clarity in this article, has the same objects, and a morphism is a homotopy class of continuous maps. That is, two continuous maps f : X → Y are considered the same in the naive homotopy category if one can be continuously deformed to the other.

  7. Homeomorphism - Wikipedia

    en.wikipedia.org/wiki/Homeomorphism

    In the case of homotopy, the continuous deformation from one map to the other is of the essence, and it is also less restrictive, since none of the maps involved need to be one-to-one or onto. Homotopy does lead to a relation on spaces: homotopy equivalence. There is a name for the kind of deformation involved in visualizing a homeomorphism.

  8. Homotopical connectivity - Wikipedia

    en.wikipedia.org/wiki/Homotopical_connectivity

    A topological space X is path-connected if and only if its 0th homotopy group vanishes identically, as path-connectedness implies that any two points x 1 and x 2 in X can be connected with a continuous path which starts in x 1 and ends in x 2, which is equivalent to the assertion that every mapping from S 0 (a discrete set of two points) to X ...

  9. Regular homotopy - Wikipedia

    en.wikipedia.org/wiki/Regular_homotopy

    Any two knots in 3-space are equivalent by regular homotopy, though not by isotopy. This curve has total curvature 6π, and turning number 3.. The Whitney–Graustein theorem classifies the regular homotopy classes of a circle into the plane; two immersions are regularly homotopic if and only if they have the same turning number – equivalently, total curvature; equivalently, if and only if ...