Ad
related to: hydrogen and helium combined number of carbon products
Search results
Results from the WOW.Com Content Network
As a side effect of the process, some carbon nuclei fuse with additional helium to produce a stable isotope of oxygen and energy: 12 6 C + 4 2 He → 16 8 O + γ (+7.162 MeV) Nuclear fusion reactions of helium with hydrogen produces lithium-5, which also is highly unstable, and decays back into smaller nuclei with a half-life of 3.7 × 10 −22 s.
As a result, there is little mixing of fresh hydrogen into the core or fusion products outward. In higher-mass stars, the dominant energy production process is the CNO cycle, which is a catalytic cycle that uses nuclei of carbon, nitrogen and oxygen as intermediaries and in the end produces a helium nucleus as with the proton–proton chain. [22]
The subsequent nucleosynthesis of heavier elements (Z ≥ 6, carbon and heavier elements) requires the extreme temperatures and pressures found within stars and supernovae. These processes began as hydrogen and helium from the Big Bang collapsed into the first stars after about 500 million years.
Francis Aston had also recently shown that the mass of a helium atom was about 0.8% less than the mass of the four hydrogen atoms which would, combined, form a helium atom (according to the then-prevailing theory of atomic structure which held atomic weight to be the distinguishing property between elements; work by Henry Moseley and Antonius ...
In this field, for historical reasons it is customary to quote the helium-4 fraction by mass, symbol Y, so that 25% helium-4 means that helium-4 atoms account for 25% of the mass, but less than 8% of the nuclei would be helium-4 nuclei. Other (trace) nuclei are usually expressed as number ratios to hydrogen.
The other class is a cycle of reactions called the triple-alpha process, which consumes only helium, and produces carbon. [1] The alpha process most commonly occurs in massive stars and during supernovae. Both processes are preceded by hydrogen fusion, which produces the helium that fuels both the triple-alpha process and the alpha ladder ...
Supernova nucleosynthesis is the nucleosynthesis of chemical elements in supernova explosions.. In sufficiently massive stars, the nucleosynthesis by fusion of lighter elements into heavier ones occurs during sequential hydrostatic burning processes called helium burning, carbon burning, oxygen burning, and silicon burning, in which the byproducts of one nuclear fuel become, after ...
In the Sun, each helium-3 nucleus produced in these reactions exists for only about 400 years before it is converted into helium-4. [9] Once the helium-3 has been produced, there are four possible paths to generate 4 He. In p–p I, helium-4 is produced by fusing two helium-3 nuclei; the p–p II and p–p III branches fuse 3 He with pre ...
Ad
related to: hydrogen and helium combined number of carbon products