Search results
Results from the WOW.Com Content Network
According to the special theory of relativity introduced by Albert Einstein, it is impossible to say in an absolute sense that two distinct events occur at the same time if those events are separated in space. If one reference frame assigns precisely the same time to two events that are at different points in space, a reference frame that is ...
In probability theory, an event is said to happen almost surely (sometimes abbreviated as a.s.) if it happens with probability 1 (with respect to the probability measure). [1] In other words, the set of outcomes on which the event does not occur has probability 0, even though the set might not be empty.
One of the goals of relativity is to specify the possibility of one event influencing another. This is done by means of the metric tensor, which allows for determining the causal structure of spacetime. The difference (or interval) between two events can be classified into spacelike, lightlike and timelike separations. Only if two events are ...
In logic, two propositions and are mutually exclusive if it is not logically possible for them to be true at the same time; that is, () is a tautology. To say that more than two propositions are mutually exclusive, depending on the context, means either 1. "() () is a tautology" (it is not logically possible for more than one proposition to be true) or 2. "() is a tautology" (it is not ...
In other words, it is a fallacy of reaching a conclusion that one thing caused another, simply because they are regularly associated. Questionable cause can be logically reduced to: "A is regularly associated with B; therefore, A causes B." [1] For example: "Every time I score an A on the test its a sunny day.
A paradox is a logically self-contradictory statement or a statement that runs contrary to one's expectation. [1] [2] It is a statement that, despite apparently valid reasoning from true or apparently true premises, leads to a seemingly self-contradictory or a logically unacceptable conclusion.
Intuitively, one might think the player is choosing between two doors with equal probability, and that the opportunity to choose another door makes no difference. However, an analysis of the probability spaces would reveal that the contestant has received new information, and that changing to the other door would increase their chances of winning.
It is possible to construct an expected value equal to the probability of an event by taking the expectation of an indicator function that is one if the event has occurred and zero otherwise. This relationship can be used to translate properties of expected values into properties of probabilities, e.g. using the law of large numbers to justify ...