enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Speed of light - Wikipedia

    en.wikipedia.org/wiki/Speed_of_Light

    The speed of light in vacuum, commonly denoted c, is a universal physical constant that is exactly equal to 299,792,458 metres per second (approximately 300,000 kilometres per second; 186,000 miles per second; 671 million miles per hour).

  3. Light - Wikipedia

    en.wikipedia.org/wiki/Light

    The speed of light in vacuum is defined to be exactly 299 792 458 m/s (approximately 186,282 miles per second). The fixed value of the speed of light in SI units results from the fact that the metre is now defined in terms of the speed of light. All forms of electromagnetic radiation move at exactly this same speed in vacuum.

  4. One-way speed of light - Wikipedia

    en.wikipedia.org/wiki/One-way_speed_of_light

    The two-way speed of light is the average speed of light from one point, such as a source, to a mirror and back again. Because the light starts and finishes in the same place, only one clock is needed to measure the total time; thus, this speed can be experimentally determined independently of any clock synchronization scheme.

  5. Dispersion (optics) - Wikipedia

    en.wikipedia.org/wiki/Dispersion_(optics)

    where c is the speed of light in vacuum, and n is the refractive index of the medium. In general, the refractive index is some function of the frequency f of the light, thus n = n(f), or alternatively, with respect to the wave's wavelength n = n(λ).

  6. Dispersion relation - Wikipedia

    en.wikipedia.org/wiki/Dispersion_relation

    It is possible to make the effective speed of light dependent on wavelength by making light pass through a material which has a non-constant index of refraction, or by using light in a non-uniform medium such as a waveguide. In this case, the waveform will spread over time, such that a narrow pulse will become an extended pulse, i.e., be dispersed.

  7. Speed of electricity - Wikipedia

    en.wikipedia.org/wiki/Speed_of_electricity

    The speed at which energy or signals travel down a cable is actually the speed of the electromagnetic wave traveling along (guided by) the cable. I.e., a cable is a form of a waveguide. The propagation of the wave is affected by the interaction with the material(s) in and surrounding the cable, caused by the presence of electric charge carriers ...

  8. Speed of gravity - Wikipedia

    en.wikipedia.org/wiki/Speed_of_gravity

    Kopeikin and Fomalont concluded that the speed of gravity is between 0.8 and 1.2 times the speed of light, which would be fully consistent with the theoretical prediction of general relativity that the speed of gravity is exactly the same as the speed of light. [23] Several physicists, including Clifford M.

  9. Optics - Wikipedia

    en.wikipedia.org/wiki/Optics

    The index of refraction of a medium is related to the speed, v, of light in that medium by = /, where c is the speed of light in vacuum. Snell's Law can be used to predict the deflection of light rays as they pass through linear media as long as the indexes of refraction and the geometry of the media are known.