Search results
Results from the WOW.Com Content Network
When the target gene is not found in the vector, the alpha fragment gene would be active, producing the alpha fragment and allowing for B-galactosidase to gain its activity. To trace the activity of B-galactosidase a colorless analog of lactose is used, X-gal. The hydrolysis of X-gal by B-galactosidase produces galactose, a blue colored compound.
A recent study conducted in 2020–2021 determined that Beta-Galactosidase activity correlates with senescence of the cells. Senescence of the cells can be interpreted as cells that do not divide, but cells that do not die. Beta-Galactosidase activity can be overexpressed, and this can lead to various diseases afflicting a wide range of body ...
α-Galactosidase ( EC 3.2.1.22, α-GAL, α-GAL A; systematic name α-D-galactoside galactohydrolase) is a glycoside hydrolase enzyme that catalyses the following reaction: [1] Hydrolysis of terminal, non-reducing α- D -galactose residues in α- D -galactosides, including galactose oligosaccharides, galactomannans and galactolipids
In general, mitosis (division of the nucleus) is preceded by the S stage of interphase (during which the DNA replication occurs) and is followed by telophase and cytokinesis; which divides the cytoplasm, organelles, and cell membrane of one cell into two new cells containing roughly equal shares of these cellular components.
The eukaryotic cell cycle consists of four distinct phases: G 1 phase, S phase (synthesis), G 2 phase (collectively known as interphase) and M phase (mitosis and cytokinesis). M phase is itself composed of two tightly coupled processes: mitosis, in which the cell's nucleus divides, and cytokinesis, in which the cell's cytoplasm and cell membrane divides forming two daughter cells.
However, this results in a false positive for cells that naturally have these two proteins such as maturing tissue macrophages with senescence-associated beta-galactosidase and T-cells with p16 Ink4A. [13] Senescent cells can undergo conversion to an immunogenic phenotype that enables them to be eliminated by the immune system. [18]
The RNA transcript of the GLB1 gene is alternatively spliced and produces 2 mRNAs. The 2.5-kilobase transcript encodes the beta-galactosidase enzyme of 677 amino acids.The alternative 2.0-kb mRNA encodes a beta-galactosidase-related protein (S-Gal) that is only 546 amino acids long and that has no enzymatic activity.
Cell division is an extremely complex process that contains four different subprocesses. [2] These processes included the growth of a cell, DNA replication, the process of allocating replicated chromosomes to daughter cells, and septum formation. [2] Ultimately, the septum is the crucial ending to mitosis, meiosis, and the division of bacterial ...