enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Hyperbolic space - Wikipedia

    en.wikipedia.org/wiki/Hyperbolic_space

    Hyperbolic space, developed independently by Nikolai Lobachevsky, János Bolyai and Carl Friedrich Gauss, is a geometric space analogous to Euclidean space, but such that Euclid's parallel postulate is no longer assumed to hold. Instead, the parallel postulate is replaced by the following alternative (in two dimensions):

  3. Hyperbolic metric space - Wikipedia

    en.wikipedia.org/wiki/Hyperbolic_metric_space

    A definition of a -hyperbolic space is then a geodesic metric space all of whose geodesic triangles are -slim. This definition is generally credited to Eliyahu Rips . Another definition can be given using the notion of a C {\displaystyle C} -approximate center of a geodesic triangle: this is a point which is at distance at most C {\displaystyle ...

  4. Hyperbolic geometry - Wikipedia

    en.wikipedia.org/wiki/Hyperbolic_geometry

    Because Euclidean, hyperbolic and elliptic geometry are all consistent, the question arises: which is the real geometry of space, and if it is hyperbolic or elliptic, what is its curvature? Lobachevsky had already tried to measure the curvature of the universe by measuring the parallax of Sirius and treating Sirius as the ideal point of an ...

  5. Hyperbolic - Wikipedia

    en.wikipedia.org/wiki/Hyperbolic

    Hyperbolic may refer to: of or pertaining to a hyperbola, a type of smooth curve lying in a plane in mathematics Hyperbolic geometry, a non-Euclidean geometry; Hyperbolic functions, analogues of ordinary trigonometric functions, defined using the hyperbola; of or pertaining to hyperbole, the use of exaggeration as a rhetorical device or figure ...

  6. Hyperboloid model - Wikipedia

    en.wikipedia.org/wiki/Hyperboloid_model

    Then n-dimensional hyperbolic space is a Riemannian space and distance or length can be defined as the square root of the scalar square. If the signature (+, −, −) is chosen, scalar square between distinct points on the hyperboloid will be negative, so various definitions of basic terms must be adjusted, which can be inconvenient.

  7. Hyperbolic motion - Wikipedia

    en.wikipedia.org/wiki/Hyperbolic_motion

    Hyperbolic motions are often taken from inversive geometry: these are mappings composed of reflections in a line or a circle (or in a hyperplane or a hypersphere for hyperbolic spaces of more than two dimensions). To distinguish the hyperbolic motions, a particular line or circle is taken as the absolute.

  8. Shape of the universe - Wikipedia

    en.wikipedia.org/wiki/Shape_of_the_universe

    A global geometry is a local geometry plus a topology. It follows that a topology alone does not give a global geometry: for instance, Euclidean 3-space and hyperbolic 3-space have the same topology but different global geometries. As stated in the introduction, investigations within the study of the global structure of the universe include:

  9. Hyperbolic manifold - Wikipedia

    en.wikipedia.org/wiki/Hyperbolic_manifold

    For > the hyperbolic structure on a finite volume hyperbolic -manifold is unique by Mostow rigidity and so geometric invariants are in fact topological invariants. One of these geometric invariants used as a topological invariant is the hyperbolic volume of a knot or link complement, which can allow us to distinguish two knots from each other ...