enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Kepler orbit - Wikipedia

    en.wikipedia.org/wiki/Kepler_orbit

    An elliptic Kepler orbit with an eccentricity of 0.7, a parabolic Kepler orbit and a hyperbolic Kepler orbit with an eccentricity of 1.3. The distance to the focal point is a function of the polar angle relative to the horizontal line as given by the equation ()

  3. Kepler's laws of planetary motion - Wikipedia

    en.wikipedia.org/wiki/Kepler's_laws_of_planetary...

    Kepler's first law states that: The orbit of every planet is an ellipse with the sun at one of the two foci. Kepler's first law placing the Sun at one of the foci of an elliptical orbit Heliocentric coordinate system (r, θ) for ellipse.

  4. Orbital elements - Wikipedia

    en.wikipedia.org/wiki/Orbital_elements

    Orbital elements are the parameters required to uniquely identify a specific orbit. In celestial mechanics these elements are considered in two-body systems using a Kepler orbit . There are many different ways to mathematically describe the same orbit, but certain schemes, each consisting of a set of six parameters, are commonly used in ...

  5. Orbital eccentricity - Wikipedia

    en.wikipedia.org/wiki/Orbital_eccentricity

    A value of 0 is a circular orbit, values between 0 and 1 form an elliptic orbit, 1 is a parabolic escape orbit (or capture orbit), and greater than 1 is a hyperbola. The term derives its name from the parameters of conic sections, as every Kepler orbit is a conic section.

  6. Elliptic orbit - Wikipedia

    en.wikipedia.org/wiki/Elliptic_orbit

    In a stricter sense, it is a Kepler orbit with the eccentricity greater than 0 and less than 1 (thus excluding the circular orbit). In a wider sense, it is a Kepler orbit with negative energy. This includes the radial elliptic orbit, with eccentricity equal to 1. They are frequently used during various astrodynamic calculations.

  7. Parabolic trajectory - Wikipedia

    en.wikipedia.org/wiki/Parabolic_trajectory

    In astrodynamics or celestial mechanics a parabolic trajectory is a Kepler orbit with the eccentricity equal to 1 and is an unbound orbit that is exactly on the border between elliptical and hyperbolic. When moving away from the source it is called an escape orbit, otherwise a capture orbit.

  8. Kepler's equation - Wikipedia

    en.wikipedia.org/wiki/Kepler's_equation

    In orbital mechanics, Kepler's equation relates various geometric properties of the orbit of a body subject to a central force. It was derived by Johannes Kepler in 1609 in Chapter 60 of his Astronomia nova , [ 1 ] [ 2 ] and in book V of his Epitome of Copernican Astronomy (1621) Kepler proposed an iterative solution to the equation.

  9. Celestial mechanics - Wikipedia

    en.wikipedia.org/wiki/Celestial_mechanics

    Osculating orbit is the temporary Keplerian orbit about a central body that an object would continue on, if other perturbations were not present. Retrograde motion is orbital motion in a system, such as a planet and its satellites, that is contrary to the direction of rotation of the central body, or more generally contrary in direction to the ...