Search results
Results from the WOW.Com Content Network
A variety of basic concepts is used in the study and analysis of logical reasoning. Logical reasoning happens by inferring a conclusion from a set of premises. [3] Premises and conclusions are normally seen as propositions. A proposition is a statement that makes a claim about what is the case.
Reason is the capacity for consciously making sense of things, applying logic, for establishing and verifying facts, and changing or justifying practices, institutions, and beliefs based on new or existing information.
Computational logic is the branch of logic and computer science that studies how to implement mathematical reasoning and logical formalisms using computers. This includes, for example, automatic theorem provers , which employ rules of inference to construct a proof step by step from a set of premises to the intended conclusion without human ...
As the study of argument is of clear importance to the reasons that we hold things to be true, logic is of essential importance to rationality. Arguments may be logical if they are "conducted or assessed according to strict principles of validity", [1] while they are rational according to the broader requirement that they are based on reason and knowledge.
This logical perspective on argument is relevant for scientific fields such as mathematics and computer science. Logic is the study of the forms of reasoning in arguments and the development of standards and criteria to evaluate arguments. [ 5 ]
Mathematical logic, also called 'logistic', 'symbolic logic', the 'algebra of logic', and, more recently, simply 'formal logic', is the set of logical theories elaborated in the course of the nineteenth century with the aid of an artificial notation and a rigorously deductive method. [5]
Non-classical logics (and sometimes alternative logics) are formal systems that differ in a significant way from standard logical systems such as propositional and predicate logic. There are several ways in which this is commonly the case, including by way of extensions, deviations, and variations.
Inferences are steps in reasoning, moving from premises to logical consequences; etymologically, the word infer means to "carry forward". Inference is theoretically traditionally divided into deduction and induction, a distinction that in Europe dates at least to Aristotle (300s BCE).