Search results
Results from the WOW.Com Content Network
These diverticula make their appearance before the closure of the anterior end of the neural tube; [1] [2] after the closure of the tube around the 4th week of development, they are known as the optic vesicles. Previous studies of optic vesicles suggest that the surrounding extraocular tissues – the surface ectoderm and extraocular mesenchyme ...
The optic vesicles project toward the sides of the head, and the peripheral part of each expands to form a hollow bulb, while the proximal part remains narrow and constitutes the optic stalk. [1] [2] Closure of the choroidal fissure in the optic stalk occurs during the seventh week of development. The former optic stalk is then called the optic ...
The optic vesicles then develop into the optic cup with the inner layer forming the retina and the outer portion forming the retinal pigment epithelium. The middle portion of the optic cup develops into the ciliary body and iris. [7] During the invagination of the optic cup, the ectoderm begins to thicken and form the lens placode, which ...
During embryonic development of the eye, the outer wall of the bulb of the optic vesicles becomes thickened and invaginated, and the bulb is thus converted into a cup, the optic cup (or ophthalmic cup), consisting of two strata of cells.
Thin pale fibres can just be seen within the cytoplasm Structure on the outside surface of eye lens capsule at equator showing the fused cells and vesicles associated with it The structures in the images are consistent with the laying down of new capsular material required for growth. [ 15 ]
The system detects, transduces and interprets information concerning light within the visible range to construct an image and build a mental model of the surrounding environment. The visual system is associated with the eye and functionally divided into the optical system (including cornea and lens ) and the neural system (including the retina ...
This causes an immune response which, in turn, clears the meshwork channel/drain of cellular build up. This allows more aqueous humour to flow into Schlemm's canal from the anterior cavity, reducing the intraocular pressure and therefore lowering the risk of glaucoma, or further damage to the optic nerve, due to overpressure in the eye.
Improper closure of the neuropores can result in neural tube defects such as anencephaly or spina bifida. The dorsal part of the neural tube contains the alar plate, which is associated primarily with sensation. The ventral part of the neural tube contains the basal plate, which is primarily associated with motor (i.e., muscle) control.