enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Coulomb's law - Wikipedia

    en.wikipedia.org/wiki/Coulomb's_law

    citation needed] Strictly speaking, Gauss's law cannot be derived from Coulomb's law alone, since Coulomb's law gives the electric field due to an individual, electrostatic point charge only. However, Gauss's law can be proven from Coulomb's law if it is assumed, in addition, that the electric field obeys the superposition principle. The ...

  3. Electric charge - Wikipedia

    en.wikipedia.org/wiki/Electric_charge

    Electric charge is a conserved property: the net charge of an isolated system, the quantity of positive charge minus the amount of negative charge, cannot change. Electric charge is carried by subatomic particles. In ordinary matter, negative charge is carried by electrons, and positive charge is carried by the protons in the nuclei of atoms ...

  4. Charge conservation - Wikipedia

    en.wikipedia.org/wiki/Charge_conservation

    Mathematically, we can state the law of charge conservation as a continuity equation: = ˙ ˙ (). where / is the electric charge accumulation rate in a specific volume at time t, ˙ is the amount of charge flowing into the volume and ˙ is the amount of charge flowing out of the volume; both amounts are regarded as generic functions of time.

  5. Gauss's law - Wikipedia

    en.wikipedia.org/wiki/Gauss's_law

    Gauss's law makes it possible to find the distribution of electric charge: The charge in any given region of the conductor can be deduced by integrating the electric field to find the flux through a small box whose sides are perpendicular to the conductor's surface and by noting that the electric field is perpendicular to the surface, and zero ...

  6. Maxwell's equations - Wikipedia

    en.wikipedia.org/wiki/Maxwell's_equations

    Electric field from positive to negative charges. Gauss's law describes the relationship between an electric field and electric charges: an electric field points away from positive charges and towards negative charges, and the net outflow of the electric field through a closed surface is proportional to the enclosed charge, including bound charge due to polarization of material.

  7. Electric field - Wikipedia

    en.wikipedia.org/wiki/Electric_field

    Electric fields are caused by electric charges, described by Gauss's law, [11] and time varying magnetic fields, described by Faraday's law of induction. [12] Together, these laws are enough to define the behavior of the electric field.

  8. Introduction to electromagnetism - Wikipedia

    en.wikipedia.org/wiki/Introduction_to...

    Coulomb's law tells us that like charges repel and opposite charges attract. Electromagnetism is one of the fundamental forces of nature alongside gravity, the strong force and the weak force. Whereas gravity acts on all things that have mass, electromagnetism acts on all things that have electric charge.

  9. Electrostatics - Wikipedia

    en.wikipedia.org/wiki/Electrostatics

    where = is the distance of each charge from the test charge, which situated at the point , and () is the electric potential that would be at if the test charge were not present. If only two charges are present, the potential energy is Q 1 Q 2 / ( 4 π ε 0 r ) {\displaystyle Q_{1}Q_{2}/(4\pi \varepsilon _{0}r)} .