enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Type III error - Wikipedia

    en.wikipedia.org/wiki/Type_III_error

    In statistical hypothesis testing, there are various notions of so-called type III errors (or errors of the third kind), and sometimes type IV errors or higher, by analogy with the type I and type II errors of Jerzy Neyman and Egon Pearson. Fundamentally, type III errors occur when researchers provide the right answer to the wrong question, i.e ...

  3. Type I and type II errors - Wikipedia

    en.wikipedia.org/wiki/Type_I_and_type_II_errors

    This is why the hypothesis under test is often called the null hypothesis (most likely, coined by Fisher (1935, p. 19)), because it is this hypothesis that is to be either nullified or not nullified by the test. When the null hypothesis is nullified, it is possible to conclude that data support the "alternative hypothesis" (which is the ...

  4. False positives and false negatives - Wikipedia

    en.wikipedia.org/wiki/False_positives_and_false...

    In statistical hypothesis testing, this fraction is given the Greek letter α, and 1 − α is defined as the specificity of the test. Increasing the specificity of the test lowers the probability of type I errors, but may raise the probability of type II errors (false negatives that reject the alternative hypothesis when it is true). [a]

  5. Ramsey RESET test - Wikipedia

    en.wikipedia.org/wiki/Ramsey_RESET_test

    The intuition behind the test is that if non-linear combinations of the explanatory variables have any power in explaining the response variable, the model is misspecified in the sense that the data generating process might be better approximated by a polynomial or another non-linear functional form.

  6. Multiple comparisons problem - Wikipedia

    en.wikipedia.org/wiki/Multiple_comparisons_problem

    A normal quantile plot for a simulated set of test statistics that have been standardized to be Z-scores under the null hypothesis. The departure of the upper tail of the distribution from the expected trend along the diagonal is due to the presence of substantially more large test statistic values than would be expected if all null hypotheses were true.

  7. Error guessing - Wikipedia

    en.wikipedia.org/wiki/Error_guessing

    The scope of test cases usually rely on the software tester involved, who uses experience and intuition to determine what situations commonly cause software failure, or may cause errors to appear. [2] Typical errors include divide by zero, null pointers, or invalid parameters. [3]

  8. Probability of error - Wikipedia

    en.wikipedia.org/wiki/Probability_of_error

    For a Type I error, it is shown as α (alpha) and is known as the size of the test and is 1 minus the specificity of the test. This quantity is sometimes referred to as the confidence of the test, or the level of significance (LOS) of the test. For a Type II error, it is shown as β (beta) and is 1 minus the power or 1 minus the sensitivity of ...

  9. Error Carried Forward - Wikipedia

    en.wikipedia.org/wiki/Error_Carried_Forward

    That is, if a student answer's "x" for part a, the correct answer to part b is "f(x)." No matter what the student puts for part a, the corresponding answer for part b can be calculated quickly. Lawson-Perfect discloses that this system cannot identify "why" a student made an error, but maintains that it is generally successful in providing fair ...