Search results
Results from the WOW.Com Content Network
If the base set is finite, then = ℘ since every subset of , and in particular every complement, is then finite.This case is sometimes excluded by definition or else called the improper filter on . [2] Allowing to be finite creates a single exception to the Fréchet filter’s being free and non-principal since a filter on a finite set cannot be free and a non-principal filter cannot contain ...
A is a subset of B (denoted ) and, conversely, B is a superset of A (denoted ). In mathematics, a set A is a subset of a set B if all elements of A are also elements of B; B is then a superset of A. It is possible for A and B to be equal; if they are unequal, then A is a proper subset of B.
In mathematics, a filter on a set is a family of subsets such that: [1]. and ; if and , then ; If and , then ; A filter on a set may be thought of as representing a "collection of large subsets", [2] one intuitive example being the neighborhood filter.
Given an ordinal a, a subset of a is called a club if it is closed in the order topology of a but has net-theoretic limit a. The clubs of a form a filter: the club filter, ♣(a). The previous construction generalizes as follows: any club C is also a collection of dense subsets (in the ordinal topology) of a, and ♣(a) meets each element of C.
An ideal in the sense of ring theory, usually of a Boolean algebra, especially the Boolean algebra of subsets of a set iff if and only if improper See proper, below. inaccessible cardinal A (weakly or strongly) inaccessible cardinal is a regular uncountable cardinal that is a (weak or strong) limit indecomposable ordinal
If A is a subset of B, then one can also say that B is a superset of A, that A is contained in B, or that B contains A. In symbols, A ⊆ B means that A is a subset of B, and B ⊇ A means that B is a superset of A. Some authors use the symbols ⊂ and ⊃ for subsets, and others use these symbols only for proper subsets. For clarity, one can ...
Every finite or countably infinite subset of the real numbers is a null set. For example, the set of natural numbers , the set of rational numbers and the set of algebraic numbers are all countably infinite and therefore are null sets when considered as subsets of the real numbers.
In group theory, a branch of mathematics, a subset of a group G is a subgroup of G if the members of that subset form a group with respect to the group operation in G. Formally, given a group G under a binary operation ∗, a subset H of G is called a subgroup of G if H also forms a group under the operation ∗.