Search results
Results from the WOW.Com Content Network
Helicity is a pseudo-scalar quantity: it changes sign under change from a right-handed to a left-handed frame of reference; it can be considered as a measure of the handedness (or chirality) of the flow. Helicity is one of the four known integral invariants of the Euler equations; the other three are energy, momentum and angular momentum.
The automatic calculation of particle interaction or decay is part of the computational particle physics branch. It refers to computing tools that help calculating the complex particle interactions as studied in high-energy physics, astroparticle physics and cosmology.
The helicity of a particle is positive (" right-handed") if the direction of its spin is the same as the direction of its motion and negative ("left-handed") if opposite. Helicity is conserved. [1] That is, the helicity commutes with the Hamiltonian, and thus, in the absence of external forces, is time-invariant. It is also rotationally ...
It describes the rate of change of vorticity of the moving fluid particle. This change can be attributed to unsteadiness in the flow ( ∂ω / ∂t , the unsteady term) or due to the motion of the fluid particle as it moves from one point to another ((u ∙ ∇)ω, the convection term).
In physics, the C parity or charge parity is a multiplicative quantum number of some particles that describes their behavior under the symmetry operation of charge conjugation. Charge conjugation changes the sign of all quantum charges (that is, additive quantum numbers ), including the electrical charge , baryon number and lepton number , and ...
In continuum mechanics, vorticity is a pseudovector (or axial vector) field that describes the local spinning motion of a continuum near some point (the tendency of something to rotate [1]), as would be seen by an observer located at that point and traveling along with the flow.
h f = head loss in meters (water) over the length of pipe; L = length of pipe in meters; Q = volumetric flow rate, m 3 /s (cubic meters per second) C = pipe roughness coefficient; d = inside pipe diameter, m (meters) Note: pressure drop can be computed from head loss as h f × the unit weight of water (e.g., 9810 N/m 3 at 4 deg C)
The Zimm–Bragg model takes the cooperativity of each segment into consideration when calculating fractional helicity. The probability of any given monomer being a helix or coil is affected by which the previous monomer is; that is, whether the new site is a nucleation or propagation. By convention, a coil unit ('C') is always of statistical ...