Search results
Results from the WOW.Com Content Network
Chemisorption is a kind of adsorption which involves a chemical reaction between the surface and the adsorbate. New chemical bonds are generated at the adsorbent surface. Examples include macroscopic phenomena that can be very obvious, like corrosion [clarification needed], and subtler effects associated with heterogeneous catalysis, where the catalyst and reactants are in different pha
BET model of multilayer adsorption, that is, a random distribution of sites covered by one, two, three, etc., adsorbate molecules. The concept of the theory is an extension of the Langmuir theory, which is a theory for monolayer molecular adsorption, to multilayer adsorption with the following hypotheses:
Langmuir published two papers that confirmed the assumption that adsorbed films do not exceed one molecule in thickness. The first experiment involved observing electron emission from heated filaments in gases. [3] The second, a more direct evidence, examined and measured the films of liquid onto an adsorbent surface layer.
The two scientists proposed a structure for this bi-layer, with the polar hydrophilic heads facing outwards towards the aqueous environment and the hydrophobic tails facing inwards away from the aqueous surroundings on both sides of the membrane. Although they arrived at the right conclusions, some of the experimental data were incorrect such ...
This model is the simplest useful approximation that still retains the dependence of the adsorption rate on the coverage, and in the simplest case, precursor states are not considered. For dissociative adsorption to be possible, each incident molecule requires n available adsorption sites, where n is the number of dissociated fragments.
Two types of adsorption are recognized: physisorption, weakly bound adsorption, and chemisorption, strongly bound adsorption. Many processes in heterogeneous catalysis lie between the two extremes. The Lennard-Jones model provides a basic framework for predicting molecular interactions as a function of atomic separation. [6]
Fluid mosaic model of a cell membrane. The fluid mosaic model explains various characteristics regarding the structure of functional cell membranes.According to this biological model, there is a lipid bilayer (two molecules thick layer consisting primarily of amphipathic phospholipids) in which protein molecules are embedded.
It breaks down an apparently unimolecular reaction into two elementary steps, with a rate constant for each elementary step. The rate law and rate equation for the entire reaction can be derived from the rate equations and rate constants for the two steps. The Lindemann mechanism is used to model gas phase decomposition or isomerization reactions