enow.com Web Search

  1. Ad

    related to: laplace equation solution

Search results

  1. Results from the WOW.Com Content Network
  2. Laplace's equation - Wikipedia

    en.wikipedia.org/wiki/Laplace's_equation

    In mathematics and physics, Laplace's equation is a second-order partial differential equation named after Pierre-Simon Laplace, who first studied its properties.This is often written as = or =, where = = is the Laplace operator, [note 1] is the divergence operator (also symbolized "div"), is the gradient operator (also symbolized "grad"), and (,,) is a twice-differentiable real-valued function.

  3. Green's function for the three-variable Laplace equation

    en.wikipedia.org/wiki/Green's_function_for_the...

    Using the Green's function for the three-variable Laplace operator, one can integrate the Poisson equation in order to determine the potential function. Green's functions can be expanded in terms of the basis elements (harmonic functions) which are determined using the separable coordinate systems for the linear partial differential equation ...

  4. Weyl's lemma (Laplace equation) - Wikipedia

    en.wikipedia.org/wiki/Weyl's_lemma_(Laplace...

    Taking the limit as and using the properties of mollifiers, one finds that also has the mean value property, [2] which implies that it is a smooth solution of Laplace's equation. [ 3 ] [ 4 ] Alternative proofs use the smoothness of the fundamental solution of the Laplacian or suitable a priori elliptic estimates.

  5. Perron method - Wikipedia

    en.wikipedia.org/wiki/Perron_method

    In the mathematical study of harmonic functions, the Perron method, also known as the method of subharmonic functions, is a technique introduced by Oskar Perron for the solution of the Dirichlet problem for Laplace's equation. The Perron method works by finding the largest subharmonic function with boundary values below the desired values; the ...

  6. Cylindrical harmonics - Wikipedia

    en.wikipedia.org/wiki/Cylindrical_harmonics

    The cylindrical harmonics for (k,n) are now the product of these solutions and the general solution to Laplace's equation is given by a linear combination of these solutions: (,,) = | | (,) (,) where the () are constants with respect to the cylindrical coordinates and the limits of the summation and integration are determined by the boundary ...

  7. Fundamental solution - Wikipedia

    en.wikipedia.org/wiki/Fundamental_solution

    Once the fundamental solution is found, it is straightforward to find a solution of the original equation, through convolution of the fundamental solution and the desired right hand side. Fundamental solutions also play an important role in the numerical solution of partial differential equations by the boundary element method.

  8. Solid harmonics - Wikipedia

    en.wikipedia.org/wiki/Solid_harmonics

    In physics and mathematics, the solid harmonics are solutions of the Laplace equation in spherical polar coordinates, assumed to be (smooth) functions .There are two kinds: the regular solid harmonics (), which are well-defined at the origin and the irregular solid harmonics (), which are singular at the origin.

  9. Elliptic operator - Wikipedia

    en.wikipedia.org/wiki/Elliptic_operator

    A solution to Laplace's equation defined on an annulus.The Laplace operator is the most famous example of an elliptic operator.. In the theory of partial differential equations, elliptic operators are differential operators that generalize the Laplace operator.

  1. Ad

    related to: laplace equation solution