Search results
Results from the WOW.Com Content Network
The specific impulse of a rocket can be defined in terms of thrust per unit mass flow of propellant. This is an equally valid (and in some ways somewhat simpler) way of defining the effectiveness of a rocket propellant. For a rocket, the specific impulse defined in this way is simply the effective exhaust velocity relative to the rocket, v e ...
The most important metric for the efficiency of a rocket engine is impulse per unit of propellant, this is called specific impulse (usually written ). This is either measured as a speed (the effective exhaust velocity in metres/second or ft/s) or as a time (seconds). For example, if an engine producing 100 pounds of thrust runs for 320 seconds ...
A rocket's required mass ratio as a function of effective exhaust velocity ratio. The classical rocket equation, or ideal rocket equation is a mathematical equation that describes the motion of vehicles that follow the basic principle of a rocket: a device that can apply acceleration to itself using thrust by expelling part of its mass with high velocity and can thereby move due to the ...
The rocket is launched using liquid hydrogen and liquid oxygen cryogenic propellants. Rocket propellant is used as reaction mass ejected from a rocket engine to produce thrust. The energy required can either come from the propellants themselves, as with a chemical rocket, or from an external source, as with ion engines.
Engine Origin Designer Vehicle Status Use Propellant Power cycle Specific impulse (s) [a] Thrust (N) [a] Chamber pressure (bar) Mass (kg) Thrust: weight ratio [b] Oxidiser: fuel ratio
This is called the rocket's specific impulse. [2] ... Flying rockets are primarily ... In common with the other jet-based engines, but particularly in rockets due ...
Specific impulse (usually abbreviated I sp) is a measure of how effectively a rocket uses propellant or jet engine uses fuel. By definition, it is the total impulse (or change in momentum) delivered per unit of propellant consumed [4] and is dimensionally equivalent to the generated thrust divided by the propellant mass flow rate or weight flow rate. [5]
In particular, since the oxygen is heavier than the carbon or hydrogen, essentially all combustion rocket engines run fuel-rich to reduce the exhast molecular mass, increasing exhaust velocity and thus specific impulse (and as a side benefit, temperature and cooling are reduced too). This effect favors ligher elements like pure hydrogen.