enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Deep learning - Wikipedia

    en.wikipedia.org/wiki/Deep_learning

    Deep learning has been shown to produce competitive results in medical application such as cancer cell classification, lesion detection, organ segmentation and image enhancement. [ 233 ] [ 234 ] Modern deep learning tools demonstrate the high accuracy of detecting various diseases and the helpfulness of their use by specialists to improve the ...

  3. Convolutional neural network - Wikipedia

    en.wikipedia.org/wiki/Convolutional_neural_network

    A deep Q-network (DQN) is a type of deep learning model that combines a deep neural network with Q-learning, a form of reinforcement learning. Unlike earlier reinforcement learning agents, DQNs that utilize CNNs can learn directly from high-dimensional sensory inputs via reinforcement learning. [158]

  4. Transformer (deep learning architecture) - Wikipedia

    en.wikipedia.org/wiki/Transformer_(deep_learning...

    The plain transformer architecture had difficulty converging. In the original paper [1] the authors recommended using learning rate warmup. That is, the learning rate should linearly scale up from 0 to maximal value for the first part of the training (usually recommended to be 2% of the total number of training steps), before decaying again.

  5. Comparison of deep learning software - Wikipedia

    en.wikipedia.org/wiki/Comparison_of_deep...

    1 Deep learning software by name. ... The following tables compare notable software frameworks, libraries, and computer programs for deep learning applications.

  6. Applications of artificial intelligence - Wikipedia

    en.wikipedia.org/wiki/Applications_of_artificial...

    GNoME employs deep learning techniques to efficiently explore potential material structures, achieving a significant increase in the identification of stable inorganic crystal structures. The system's predictions were validated through autonomous robotic experiments, demonstrating a noteworthy success rate of 71%.

  7. Neural network - Wikipedia

    en.wikipedia.org/wiki/Neural_network

    However, starting with the invention of the perceptron, a simple artificial neural network, by Warren McCulloch and Walter Pitts in 1943, [9] followed by the implementation of one in hardware by Frank Rosenblatt in 1957, [3] artificial neural networks became increasingly used for machine learning applications instead, and increasingly different ...

  8. Neural operators - Wikipedia

    en.wikipedia.org/wiki/Neural_operators

    Neural operators are a class of deep learning architectures designed to learn maps between infinite-dimensional function spaces.Neural operators represent an extension of traditional artificial neural networks, marking a departure from the typical focus on learning mappings between finite-dimensional Euclidean spaces or finite sets.

  9. Foundation model - Wikipedia

    en.wikipedia.org/wiki/Foundation_model

    A foundation model, also known as large X model (LxM), is a machine learning or deep learning model that is trained on vast datasets so it can be applied across a wide range of use cases. [1] Generative AI applications like Large Language Models are often examples of foundation models. [1]