Search results
Results from the WOW.Com Content Network
The United States Naval Observatory states "the Equation of Time is the difference apparent solar time minus mean solar time", i.e. if the sun is ahead of the clock the sign is positive, and if the clock is ahead of the sun the sign is negative. [6] [7] The equation of time is shown in the upper graph above for a period of slightly more than a ...
The observation techniques are topics of positional astronomy and of astrogeodesy. Ideally, the Cartesian coordinate system (α, δ) refers to an inertial frame of reference. The third coordinate is the star's distance, which is normally used as an attribute of the individual star. The following factors change star positions over time:
On a prograde planet like the Earth, the sidereal day is shorter than the solar day. At time 1, the Sun and a certain distant star are both overhead. At time 2, the planet has rotated 360° and the distant star is overhead again (1→2 = one sidereal day). But it is not until a little later, at time 3, that the Sun is overhead again (1→3 = one solar day). More simply, 1→2 is a complete ...
Zenith stars (also "star on top", "overhead star", "latitude star") [7] are stars whose declination equals the latitude of the observers location, and hence at some time in the day or night pass culminate (pass) through the zenith. When at the zenith the right ascension of the star equals the local sidereal time at your location.
The time when the Sun transits the observer's meridian depends on the geographic longitude. To find the Sun's position for a given location at a given time, one may therefore proceed in three steps as follows: [1] [2] calculate the Sun's position in the ecliptic coordinate system, convert to the equatorial coordinate system, and
A diagram of a typical nautical sextant, a tool used in celestial navigation to measure the angle between two objects viewed by means of its optical sight. Celestial navigation, also known as astronavigation, is the practice of position fixing using stars and other celestial bodies that enables a navigator to accurately determine their actual current physical position in space or on the ...
Because of precession, the positions of the constellations slowly change over time. By comparing the positions of the 41 constellations against the grid circles, an accurate determination can be made of the epoch when the original observations were performed. Based upon this information, the constellations were catalogued at 125 ± 55 BC.
In astronomy, coordinate systems are used for specifying positions of celestial objects (satellites, planets, stars, galaxies, etc.) relative to a given reference frame, based on physical reference points available to a situated observer (e.g. the true horizon and north to an observer on Earth's surface). [1]