enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Vieta's formulas - Wikipedia

    en.wikipedia.org/wiki/Vieta's_formulas

    In mathematics, Vieta's formulas relate the coefficients of a polynomial to sums and products of its roots. [1] They are named after François Viète (more commonly referred to by the Latinised form of his name, "Franciscus Vieta").

  3. Sum of radicals - Wikipedia

    en.wikipedia.org/wiki/Sum_of_radicals

    In mathematics, a sum of radicals is defined as a finite linear combination of n th roots: =, where , are natural numbers and , are real numbers.. A particular special case arising in computational complexity theory is the square-root sum problem, asking whether it is possible to determine the sign of a sum of square roots, with integer coefficients, in polynomial time.

  4. Polynomial - Wikipedia

    en.wikipedia.org/wiki/Polynomial

    The word polynomial joins two diverse roots: the Greek poly, meaning "many", and the Latin nomen, or "name". It was derived from the term binomial by replacing the Latin root bi-with the Greek poly-. That is, it means a sum of many terms (many monomials). The word polynomial was first used in the 17th century. [6]

  5. 10 Hard Math Problems That Even the Smartest People in the ...

    www.aol.com/10-hard-math-problems-even-150000090...

    The definition: A real number is algebraic if it’s the root of some polynomial with integer coefficients. For example, x²-6 is a polynomial with integer coefficients, since 1 and -6 are integers.

  6. Root of unity - Wikipedia

    en.wikipedia.org/wiki/Root_of_unity

    The sum of a root and its conjugate is twice its real part. These three sums are the three real roots of the cubic polynomial +, and the primitive seventh roots of unity are , where r runs over the roots of the above polynomial. As for every cubic polynomial, these roots may be expressed in terms of square and cube roots.

  7. Newton's identities - Wikipedia

    en.wikipedia.org/wiki/Newton's_identities

    In mathematics, Newton's identities, also known as the Girard–Newton formulae, give relations between two types of symmetric polynomials, namely between power sums and elementary symmetric polynomials. Evaluated at the roots of a monic polynomial P in one variable, they allow expressing the sums of the k-th powers of all roots of P (counted ...

  8. Quintic function - Wikipedia

    en.wikipedia.org/wiki/Quintic_function

    Finding the roots (zeros) of a given polynomial has been a prominent mathematical problem.. Solving linear, quadratic, cubic and quartic equations in terms of radicals and elementary arithmetic operations on the coefficients can always be done, no matter whether the roots are rational or irrational, real or complex; there are formulas that yield the required solutions.

  9. Multiplicity (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Multiplicity_(mathematics)

    The roots of a polynomial f are points on the affine line, which are the components of the algebraic set defined by the polynomial. The coordinate ring of this affine set is R = K [ X ] / f , {\displaystyle R=K[X]/\langle f\rangle ,} where K is an algebraically closed field containing the coefficients of f .