enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Impedance parameters - Wikipedia

    en.wikipedia.org/wiki/Impedance_parameters

    A Z-parameter matrix describes the behaviour of any linear electrical network that can be regarded as a black box with a number of ports.A port in this context is a pair of electrical terminals carrying equal and opposite currents into and out-of the network, and having a particular voltage between them.

  3. Characteristic impedance - Wikipedia

    en.wikipedia.org/wiki/Characteristic_impedance

    Applying the transmission line model based on the telegrapher's equations as derived below, [1] [2] the general expression for the characteristic impedance of a transmission line is: = + + where R {\displaystyle R} is the resistance per unit length, considering the two conductors to be in series ,

  4. Transmission line - Wikipedia

    en.wikipedia.org/wiki/Transmission_line

    Impedance (Z) parameter may defines by applying a fixed current into one port (I1) of a transmission line with the other port open and measuring the resulting voltage on each port (V1, V2) [8] [9] and computing the impedance parameter Z11 is V1/I1, and the impedance parameter Z12 is V2/I1. Since transmission lines are electrically passive and ...

  5. Primary line constants - Wikipedia

    en.wikipedia.org/wiki/Primary_line_constants

    Equivalent circuit of a transmission line for the calculation of Z 0 from the primary line constants. The characteristic impedance of a transmission line, , is defined as the impedance looking into an infinitely long line. Such a line will never return a reflection since the incident wave will never reach the end to be reflected.

  6. Telegrapher's equations - Wikipedia

    en.wikipedia.org/wiki/Telegrapher's_equations

    Equivalent circuit of an unbalanced transmission line (such as coaxial cable) where: 2/Z o is the trans-admittance of VCCS (Voltage Controlled Current Source), x is the length of transmission line, Z(s) ≡ Z o (s) is the characteristic impedance, T(s) is the propagation function, γ(s) is the propagation "constant", s ≡ j ω, and j 2 ≡ −1.

  7. Quarter-wave impedance transformer - Wikipedia

    en.wikipedia.org/wiki/Quarter-wave_impedance...

    This reflects the fact that open circuit (Z=∞) is dual to short circuit (Z=0). A transmission line that is terminated in some impedance, Z L, that is different from the characteristic impedance, Z 0, will result in a wave being reflected from the termination back to the source. At the input to the line the reflected voltage adds to the ...

  8. Distributed-element model - Wikipedia

    en.wikipedia.org/wiki/Distributed-element_model

    Fig.1 Transmission line. The distributed-element model applied to a transmission line. In electrical engineering, the distributed-element model or transmission-line model of electrical circuits assumes that the attributes of the circuit (resistance, capacitance, and inductance) are distributed continuously throughout the material of the circuit.

  9. Lattice network - Wikipedia

    en.wikipedia.org/wiki/Lattice_network

    z-parameters, or Impedance parameters, are one set from the family of parameters that define a two-port network, with input and output values defined by I 1, I 2, V 1 and V 2, [12]: 254 [25]: 29 as shown in the figure. Two-port Network. Equations defining network behaviour in terms of z-parameters are