Search results
Results from the WOW.Com Content Network
In general relativity, four-dimensional vectors, or four-vectors, are required. These four dimensions are length, height, width and time. A "point" in this context would be an event, as it has both a location and a time. Similar to vectors, tensors in relativity require four dimensions. One example is the Riemann curvature tensor.
Numerical relativity is the sub-field of general relativity which seeks to solve Einstein's equations through the use of numerical methods. Finite difference , finite element and pseudo-spectral methods are used to approximate the solution to the partial differential equations which arise.
Using the initial-value-formulation of general relativity (cf. evolution equations above), the result is the Wheeler–deWitt equation (an analogue of the Schrödinger equation) which, regrettably, turns out to be ill-defined without a proper ultraviolet (lattice) cutoff. [201]
In the case of special relativity, these include the principle of relativity, the constancy of the speed of light, and time dilation. [12] The predictions of special relativity have been confirmed in numerous tests since Einstein published his paper in 1905, but three experiments conducted between 1881 and 1938 were critical to its validation.
General relativity predicts the correct anomalous perihelion shift for all planets where this can be measured accurately (Mercury, Venus and the Earth). According to general relativity, light does not travel along straight lines when it propagates in a gravitational field. Instead, it is deflected in the presence of massive bodies.
Time evolution is the change of state brought about by the passage of time, applicable to systems with internal state (also called stateful systems). In this formulation, time is not required to be a continuous parameter, but may be discrete or even finite .
(Note that this does not apply in non-inertial frames, indeed between accelerating frames the speed of light cannot be constant. [1] Although it can be applied in non-inertial frames if an observer is confined to making local measurements. [2]) Einstein developed the theory of special relativity based on these two postulates.
The book is made of four lectures. The first is titled "Space and Time in Pre-Relativity Physics". The second lecture is titled The Theory of Special Relativity and discusses the special theory of relativity. The third and fourth lectures cover the general theory of relativity in two parts.