enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Assignment problem - Wikipedia

    en.wikipedia.org/wiki/Assignment_problem

    This is an unbalanced assignment problem. One way to solve it is to invent a fourth dummy task, perhaps called "sitting still doing nothing", with a cost of 0 for the taxi assigned to it. This reduces the problem to a balanced assignment problem, which can then be solved in the usual way and still give the best solution to the problem.

  3. List of NP-complete problems - Wikipedia

    en.wikipedia.org/wiki/List_of_NP-complete_problems

    The problem for graphs is NP-complete if the edge lengths are assumed integers. The problem for points on the plane is NP-complete with the discretized Euclidean metric and rectilinear metric. The problem is known to be NP-hard with the (non-discretized) Euclidean metric. [3]: ND22, ND23

  4. Quadratic assignment problem - Wikipedia

    en.wikipedia.org/wiki/Quadratic_assignment_problem

    The formal definition of the quadratic assignment problem is as follows: Given two sets, P ("facilities") and L ("locations"), of equal size, together with a weight function w : P × P → R and a distance function d : L × L → R. Find the bijection f : P → L ("assignment") such that the cost function:

  5. Multidimensional assignment problem - Wikipedia

    en.wikipedia.org/wiki/Multidimensional...

    This problem can be seen as a generalization of the linear assignment problem. [2] In words, the problem can be described as follows: An instance of the problem has a number of agents (i.e., cardinality parameter) and a number of job characteristics (i.e., dimensionality parameter) such as task, machine, time interval, etc. For example, an ...

  6. Quadratic bottleneck assignment problem - Wikipedia

    en.wikipedia.org/wiki/Quadratic_bottleneck...

    It is related to the quadratic assignment problem in the same way as the linear bottleneck assignment problem is related to the linear assignment problem, the "sum" is replaced with "max" in the objective function. The problem models the following real-life problem: There are a set of n facilities and a set of n locations.

  7. Generalized assignment problem - Wikipedia

    en.wikipedia.org/wiki/Generalized_assignment_problem

    In the special case in which all the agents' budgets and all tasks' costs are equal to 1, this problem reduces to the assignment problem. When the costs and profits of all tasks do not vary between different agents, this problem reduces to the multiple knapsack problem. If there is a single agent, then, this problem reduces to the knapsack problem.

  8. NP-completeness - Wikipedia

    en.wikipedia.org/wiki/NP-completeness

    While it is easy to verify whether a given assignment renders the formula true, [1] no essentially faster method to find a satisfying assignment is known than to try all assignments in succession. Cook and Levin proved that each easy-to-verify problem can be solved as fast as SAT, which is hence NP-complete.

  9. Hungarian algorithm - Wikipedia

    en.wikipedia.org/wiki/Hungarian_algorithm

    The Hungarian method is a combinatorial optimization algorithm that solves the assignment problem in polynomial time and which anticipated later primal–dual methods.It was developed and published in 1955 by Harold Kuhn, who gave it the name "Hungarian method" because the algorithm was largely based on the earlier works of two Hungarian mathematicians, Dénes Kőnig and Jenő Egerváry.