Search results
Results from the WOW.Com Content Network
Figure 1. Probabilistic parameters of a hidden Markov model (example) X — states y — possible observations a — state transition probabilities b — output probabilities. In its discrete form, a hidden Markov process can be visualized as a generalization of the urn problem with replacement (where each item from the urn is returned to the original urn before the next step). [7]
D. G. Champernowne built a Markov chain model of the distribution of income in 1953. [86] Herbert A. Simon and co-author Charles Bonini used a Markov chain model to derive a stationary Yule distribution of firm sizes. [87] Louis Bachelier was the first to observe that stock prices followed a random walk. [88]
A hidden Markov model is a Markov chain for which the state is only partially observable or noisily observable. In other words, observations are related to the state of the system, but they are typically insufficient to precisely determine the state. Several well-known algorithms for hidden Markov models exist.
The Viterbi algorithm is a dynamic programming algorithm for obtaining the maximum a posteriori probability estimate of the most likely sequence of hidden states—called the Viterbi path—that results in a sequence of observed events. This is done especially in the context of Markov information sources and hidden Markov models (HMM).
A hidden Markov model describes the joint probability of a collection of "hidden" and observed discrete random variables.It relies on the assumption that the i-th hidden variable given the (i − 1)-th hidden variable is independent of previous hidden variables, and the current observation variables depend only on the current hidden state.
The process is Markovian only at the specified jump instants, justifying the name semi-Markov. [1] [2] [3] (See also: hidden semi-Markov model.) A semi-Markov process (defined in the above bullet point) in which all the holding times are exponentially distributed is called a continuous-time Markov chain. In other words, if the inter-arrival ...
The main difference with a hidden Markov model is that neighborhood is not defined in 1 dimension but within a network, i.e. is allowed to have more than the two neighbors that it would have in a Markov chain. The model is formulated in such a way that given , are independent (conditional independence of the observable variables given the ...
Markov chains with generator matrices or block matrices of this form are called M/G/1 type Markov chains, [13] a term coined by Marcel F. Neuts. [ 14 ] [ 15 ] An M/G/1 queue has a stationary distribution if and only if the traffic intensity ρ = λ E ( G ) {\displaystyle \rho =\lambda \mathbb {E} (G)} is less than 1, in which case the unique ...