Search results
Results from the WOW.Com Content Network
Tensile stress is the stress state caused by an applied load that tends to elongate the material along the axis of the applied load, in other words, the stress caused by pulling the material. The strength of structures of equal cross-sectional area loaded in tension is independent of shape of the cross-section.
The ultimate tensile strength of a material is an intensive property; therefore its value does not depend on the size of the test specimen.However, depending on the material, it may be dependent on other factors, such as the preparation of the specimen, the presence or otherwise of surface defects, and the temperature of the test environment and material.
• Torsion, flat plates, and columns • Shells of revolution, pressure vessels, and pipes • Bodies under direct pressure and shear stress • Elastic stability • Dynamic and temperature stresses • Stress concentration • Fatigue and fracture • Stresses in fasteners and joints • Composite materials and solid biomechanics
The critical load is the greatest load that will not cause lateral deflection (buckling). For loads greater than the critical load, the column will deflect laterally. The critical load puts the column in a state of unstable equilibrium. A load beyond the critical load causes the column to fail by buckling. As the load is increased beyond the ...
Representative curves of applied stress vs number of cycles for steel (showing an endurance limit) and aluminium (showing no such limit).. The fatigue limit or endurance limit is the stress level below which an infinite number of loading cycles can be applied to a material without causing fatigue failure. [1]
Steel Design, or more specifically, Structural Steel Design, is an area of structural engineering used to design steel structures. These structures include schools , houses , bridges , commercial centers , tall buildings , warehouses , aircraft , ships and stadiums .
Get AOL Mail for FREE! Manage your email like never before with travel, photo & document views. Personalize your inbox with themes & tabs. You've Got Mail!
Wood, steel, and other materials are still frequently designed using allowable stress design, although LRFD is probably more commonly taught in the USA university system. In mechanical engineering design such as design of pressure equipment, the method uses the actual loads predicted to be experienced in practice to calculate stress and ...