Search results
Results from the WOW.Com Content Network
Natural strontium is a mixture of four stable isotopes: 84 Sr, 86 Sr, 87 Sr, and 88 Sr. [11] On these isotopes, 88 Sr is the most abundant, makes up about 82.6% of all natural strontium, though the abundance varies due to the production of radiogenic 87 Sr as the daughter of long-lived beta-decaying 87 Rb. [22] This is the basis of rubidium ...
Methane clathrate block embedded in the sediment of hydrate ridge, off Oregon, USA. Clathrate hydrates, or gas hydrates, clathrates, or hydrates, are crystalline water-based solids physically resembling ice, in which small non-polar molecules (typically gases) or polar molecules with large hydrophobic moieties are trapped inside "cages" of hydrogen bonded, frozen water molecules.
Methane clathrates feature the hydrogen-bonded framework contributed by water and the guest molecules of methane. Large amounts of methane naturally frozen in this form exist both in permafrost formations and under the ocean sea-bed. [8] Other hydrogen-bonded networks are derived from hydroquinone, urea, and thiourea.
Water ice can form clathrate compounds, known as clathrate hydrates, with a variety of small molecules that can be embedded in its spacious crystal lattice. The most notable of these is methane clathrate, 4 CH 4 ·23H 2 O, naturally found in large quantities on the ocean floor.
The number of solvent molecules surrounding each unit of solute is called the hydration number of the solute. A classic example is when water molecules arrange around a metal ion. If the metal ion is a cation, the electronegative oxygen atom of the water molecule would be attracted electrostatically to the positive charge on the metal ion. The ...
Strontium chloride is a precursor to other compounds of strontium, such as yellow strontium chromate, strontium carbonate, and strontium sulfate. Exposure of aqueous solutions of strontium chloride to the sodium salt of the desired anion often leads to formation of the solid precipitate: [9] [2] SrCl 2 + Na 2 CrO 4 → SrCrO 4 + 2 NaCl
Strontium is naturally deposited in hydroxyapatite, the mineral component of bones and teeth, following its consumption in food and water. [11] Each locale has a unique Sr isotope ratio and, therefore, the ratio found in a bone or enamel sample can be cross referenced against a record of environmental Sr ratios and assigned to a region. [11]
The ratio 87 Sr/ 86 Sr is the parameter typically reported in geologic investigations; [4] ratios in minerals and rocks have values ranging from about 0.7 to greater than 4.0 (see rubidium–strontium dating). Because strontium has an electron configuration similar to that of calcium, it readily substitutes for calcium in minerals.