Search results
Results from the WOW.Com Content Network
In all modern character sets, the null character has a code point value of zero. In most encodings, this is translated to a single code unit with a zero value. For instance, in UTF-8 it is a single zero byte. However, in Modified UTF-8 the null character is encoded as two bytes: 0xC0,0x80. This allows the byte with the value of zero, which is ...
Java internally uses Modified UTF-8 (MUTF-8), in which the null character U+0000 uses the two-byte overlong encoding 0xC0, 0x80, instead of just 0x00. [60] Modified UTF-8 strings never contain any actual null bytes but can contain all Unicode code points including U+0000, [ 61 ] which allows such strings (with a null byte appended) to be ...
Some other byte may be used as end of string instead, like 0xFE or 0xFF, which are not used in UTF-8. UTF-16 uses 2-byte integers and as either byte may be zero (and in fact every other byte is, when representing ASCII text), cannot be stored in a null-terminated byte string.
This article includes a list of general references, but it lacks sufficient corresponding inline citations. Please help to improve this article by introducing more precise citations. (July 2019) (Learn how and when to remove this message) This article compares Unicode encodings in two types of environments: 8-bit clean environments, and environments that forbid the use of byte values with the ...
For example, the null character (U+0000 NULL) is used in C-programming application environments to indicate the end of a string of characters. In this way, these programs only require a single starting memory address for a string (as opposed to a starting address and a length), since the string ends once the program reads the null character.
HTML and XML provide ways to reference Unicode characters when the characters themselves either cannot or should not be used. A numeric character reference refers to a character by its Universal Character Set/Unicode code point, and a character entity reference refers to a character by a predefined name.
In fact all lengths are defined as being in bytes and this is true in all implementations, and these functions work as well with UTF-8 as with single-byte encodings. The BSD documentation has been fixed to make this clear, but POSIX, Linux, and Windows documentation still uses "character" in many places where "byte" or "wchar_t" is the correct ...
This assumption becomes questionable, however, if the next two bytes are both 0x00; either the text begins with a null character (U+0000), or the correct encoding is actually UTF-32LE, in which the full 4-byte sequence FF FE 00 00 is one character, the BOM. The UTF-8 sequence corresponding to U+FEFF is 0xEF, 0xBB, 0xBF. This sequence has no ...