enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. File:Height Balanced Binary Tree.pdf - Wikipedia

    en.wikipedia.org/wiki/File:Height_Balanced...

    English: Analysis of data structures, tree compared to hash and array based structures, height balanced tree compared to more perfectly balanced trees, a simple height balanced tree class with test code, comparable statistics for tree performance, statistics of worst case strictly-AVL-balanced trees versus perfect full binary trees.

  3. Self-balancing binary search tree - Wikipedia

    en.wikipedia.org/wiki/Self-balancing_binary...

    For height-balanced binary trees, the height is defined to be logarithmic (⁡) in the number of items. This is the case for many binary search trees, such as AVL trees and red–black trees . Splay trees and treaps are self-balancing but not height-balanced, as their height is not guaranteed to be logarithmic in the number of items.

  4. AVL tree - Wikipedia

    en.wikipedia.org/wiki/AVL_tree

    In a binary tree the balance factor of a node X is defined to be the height difference ():= (()) (()) [6]: 459 of its two child sub-trees rooted by node X. A node X with () < is called "left-heavy", one with () > is called "right-heavy", and one with () = is sometimes simply called "balanced".

  5. Binary search tree - Wikipedia

    en.wikipedia.org/wiki/Binary_search_tree

    Various height-balanced binary search trees were introduced to confine the tree height, such as AVL trees, Treaps, and red–black trees. [5] The AVL tree was invented by Georgy Adelson-Velsky and Evgenii Landis in 1962 for the efficient organization of information. [6] [7] It was the first self-balancing binary search tree to be invented. [8]

  6. BATON Overlay - Wikipedia

    en.wikipedia.org/wiki/BATON_Overlay

    Height-Balanced. BATON is considered balanced if and only if the height of its two sub-trees at any node in the tree differs by at most one. If any node detects that the height-balanced constraint is violated, a restructuring process is initiated to ensure that the tree remains balanced.

  7. B-tree - Wikipedia

    en.wikipedia.org/wiki/B-tree

    Let h ≥ –1 be the height of the classic B-tree (see Tree (data structure) § Terminology for the tree height definition). Let n ≥ 0 be the number of entries in the tree. Let m be the maximum number of children a node can have. Each node can have at most m−1 keys.

  8. Weight-balanced tree - Wikipedia

    en.wikipedia.org/wiki/Weight-balanced_tree

    A node is α-weight-balanced if weight[n.left] ≥ α·weight[n] and weight[n.right] ≥ α·weight[n]. [7] Here, α is a numerical parameter to be determined when implementing weight balanced trees. Larger values of α produce "more balanced" trees, but not all values of α are appropriate; Nievergelt and Reingold proved that

  9. Join-based tree algorithms - Wikipedia

    en.wikipedia.org/wiki/Join-based_tree_algorithms

    If the two trees are balanced, join simply creates a new node with left subtree t 1, root k and right subtree t 2. Suppose that t 1 is heavier (this "heavier" depends on the balancing scheme) than t 2 (the other case is symmetric). Join follows the right spine of t 1 until a node c which is balanced with t 2.