enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Hypersurface - Wikipedia

    en.wikipedia.org/wiki/Hypersurface

    In geometry, a hypersurface is a generalization of the concepts of hyperplane, plane curve, and surface.A hypersurface is a manifold or an algebraic variety of dimension n − 1, which is embedded in an ambient space of dimension n, generally a Euclidean space, an affine space or a projective space. [1]

  3. Quadric (algebraic geometry) - Wikipedia

    en.wikipedia.org/wiki/Quadric_(algebraic_geometry)

    In mathematics, a quadric or quadric hypersurface is the subspace of N-dimensional space defined by a polynomial equation of degree 2 over a field. Quadrics are fundamental examples in algebraic geometry. The theory is simplified by working in projective space rather than affine space. An example is the quadric surface =

  4. 4-polytope - Wikipedia

    en.wikipedia.org/wiki/4-polytope

    Perspective projection. Just as a 3D shape can be projected onto a flat sheet, so a 4-D shape can be projected onto 3-space or even onto a flat sheet. One common projection is a Schlegel diagram which uses stereographic projection of points on the surface of a 3-sphere into three dimensions, connected by straight edges, faces, and cells drawn ...

  5. Vector projection - Wikipedia

    en.wikipedia.org/wiki/Vector_projection

    The vector projection (also known as the vector component or vector resolution) of a vector a on (or onto) a nonzero vector b is the orthogonal projection of a onto a straight line parallel to b. The projection of a onto b is often written as proj b ⁡ a {\displaystyle \operatorname {proj} _{\mathbf {b} }\mathbf {a} } or a ∥ b .

  6. Projection (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Projection_(mathematics)

    For example, the mapping that takes a point (x, y, z) in three dimensions to the point (x, y, 0) is a projection. This type of projection naturally generalizes to any number of dimensions n for the domain and k ≤ n for the codomain of the mapping. See Orthogonal projection, Projection (linear algebra). In the case of orthogonal projections ...

  7. Isotropic coordinates - Wikipedia

    en.wikipedia.org/wiki/Isotropic_coordinates

    Here, saying that = is irrotational means that the vorticity tensor of the corresponding timelike congruence vanishes; thus, this Killing vector field is hypersurface orthogonal. The fact that the spacetime admits an irrotational timelike Killing vector field is in fact the defining characteristic of a static spacetime .

  8. Differential geometry of surfaces - Wikipedia

    en.wikipedia.org/wiki/Differential_geometry_of...

    The orthogonal projection of this vector onto T c(t) S defines the covariant derivative ∇ c ′(t) X. Although this is a very geometrically clean definition, it is necessary to show that the result only depends on c ′( t ) and X , and not on c and X ; local parametrizations can be used for this small technical argument.

  9. Gauss map - Wikipedia

    en.wikipedia.org/wiki/Gauss_Map

    In differential geometry, the Gauss map of a surface is a function that maps each point in the surface to a unit vector that is orthogonal to the surface at that point. Namely, given a surface X in Euclidean space R 3 , the Gauss map is a map N : X → S 2 (where S 2 is the unit sphere ) such that for each p in X , the function value N ( p ) is ...