enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Lyapunov stability - Wikipedia

    en.wikipedia.org/wiki/Lyapunov_stability

    An additional condition called "properness" or "radial unboundedness" is required in order to conclude global stability. Global asymptotic stability (GAS) follows similarly. It is easier to visualize this method of analysis by thinking of a physical system (e.g. vibrating spring and mass) and considering the energy of such a system. If the ...

  3. Control-Lyapunov function - Wikipedia

    en.wikipedia.org/wiki/Control-Lyapunov_function

    For asymptotic stability, the state is also required to converge to =. A control-Lyapunov function is used to test whether a system is asymptotically stabilizable , that is whether for any state x there exists a control u ( x , t ) {\displaystyle u(x,t)} such that the system can be brought to the zero state asymptotically by applying the ...

  4. Stability theory - Wikipedia

    en.wikipedia.org/wiki/Stability_theory

    Asymptotic stability of fixed points of a non-linear system can often be established using the Hartman–Grobman theorem. Suppose that v is a C 1 - vector field in R n which vanishes at a point p , v ( p ) = 0 .

  5. LaSalle's invariance principle - Wikipedia

    en.wikipedia.org/wiki/LaSalle's_invariance_principle

    If ˙ is negative definite, then the global asymptotic stability of the origin is a consequence of Lyapunov's second theorem. The invariance principle gives a criterion for asymptotic stability in the case when V ˙ ( x ) {\displaystyle {\dot {V}}(\mathbf {x} )} is only negative semidefinite.

  6. Input-to-state stability - Wikipedia

    en.wikipedia.org/wiki/Input-to-state_stability

    Input-to-state stability of the systems based on time-invariant ordinary differential equations is a quite developed theory, see a recent monograph. [6] However, ISS theory of other classes of systems is also being investigated for time-variant ODE systems [20] and hybrid systems.

  7. Exponential stability - Wikipedia

    en.wikipedia.org/wiki/Exponential_stability

    In control theory, a continuous linear time-invariant system (LTI) is exponentially stable if and only if the system has eigenvalues (i.e., the poles of input-to-output systems) with strictly negative real parts (i.e., in the left half of the complex plane). [1]

  8. Comparison function - Wikipedia

    en.wikipedia.org/wiki/Comparison_function

    Comparison functions are primarily used to obtain quantitative restatements of stability properties as Lyapunov stability, uniform asymptotic stability, etc. These restatements are often more useful than the qualitative definitions of stability properties given in ε - δ {\displaystyle \varepsilon {\text{-}}\delta } language.

  9. Kharitonov's theorem - Wikipedia

    en.wikipedia.org/wiki/Kharitonov's_theorem

    Kharitonov's theorem is a result used in control theory to assess the stability of a dynamical system when the physical parameters of the system are not known precisely. When the coefficients of the characteristic polynomial are known, the Routh–Hurwitz stability criterion can be used to check if the system is stable (i.e. if all roots have negative real parts).