Search results
Results from the WOW.Com Content Network
Poisson, steeped in Coulomb's notions about magnetic action at a distance, essayed to build up a theory of magnetism of rotation, affirming that all bodies acquire a temporary magnetism in the presence of a magnet, but that in copper this temporary magnetism took a longer time to die away. In vain did Arago point out that the theory failed to ...
A reconstruction of an early Chinese compass. A spoon made of lodestone, its handle pointing south, was mounted on a brass plate with astrological symbols. [1]The history of geomagnetism is concerned with the history of the study of Earth's magnetic field.
Diagram regarding the confirmation of gravitomagnetism by Gravity Probe B. Gravitoelectromagnetism, abbreviated GEM, refers to a set of formal analogies between the equations for electromagnetism and relativistic gravitation; specifically: between Maxwell's field equations and an approximation, valid under certain conditions, to the Einstein field equations for general relativity.
A lodestone cut out of rock and floated in water returns to the same direction. Iron heated to white heat and cooled lying along a meridian also acquires magnetism. But stroking with other materials fails—he proved this with an experiment with 75 diamonds in front of witnesses. The best way to magnetize a compass (magnetized versorium).
The magnetic field (marked B, indicated by red field lines) around wire carrying an electric current (marked I) Compass and wire apparatus showing Ørsted's experiment (video [1]) In electromagnetism , Ørsted's law , also spelled Oersted's law , is the physical law stating that an electric current induces a magnetic field .
Aepinus formulated a corresponding theory of magnetism excepting that, in the case of magnetic phenomena, the fluids only acted on the particles of iron. He also made numerous electrical experiments apparently showing that, in order to manifest electrical effects, tourmaline must be heated to between 37.5 °C and 100 °C.
The moving magnet and conductor problem is a famous thought experiment, originating in the 19th century, concerning the intersection of classical electromagnetism and special relativity. In it, the current in a conductor moving with constant velocity, v , with respect to a magnet is calculated in the frame of reference of the magnet and in the ...
The geometry allows for a very uniform magnetic field to be established in the ring. Muon g − 2 (pronounced "gee minus two") is a particle physics experiment at Fermilab to measure the anomalous magnetic dipole moment of a muon to a precision of 0.14 ppm, [1] which is a sensitive test of the Standard Model. [2]