enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Proportional–integral–derivative controller - Wikipedia

    en.wikipedia.org/wiki/Proportional–integral...

    The control system performance can be improved by combining the feedback (or closed-loop) control of a PID controller with feed-forward (or open-loop) control. Knowledge about the system (such as the desired acceleration and inertia) can be fed forward and combined with the PID output to improve the overall system performance.

  3. Smith predictor - Wikipedia

    en.wikipedia.org/wiki/Smith_predictor

    The Smith predictor (invented by O. J. M. Smith in 1957) is a type of predictive controller designed to control systems with a significant feedback time delay. The idea can be illustrated as follows. The idea can be illustrated as follows.

  4. Piping and instrumentation diagram - Wikipedia

    en.wikipedia.org/wiki/Piping_and_instrumentation...

    Piping and instrumentation diagram of pump with storage tank. Symbols according to EN ISO 10628 and EN 62424. A more complex example of a P&ID. A piping and instrumentation diagram (P&ID) is defined as follows: A diagram which shows the interconnection of process equipment and the instrumentation used to control the process.

  5. Classical control theory - Wikipedia

    en.wikipedia.org/wiki/Classical_control_theory

    This is shown in the block diagram below. This kind of controller is a closed-loop controller or feedback controller. This is called a single-input-single-output (SISO) control system; MIMO (i.e., Multi-Input-Multi-Output) systems, with more than one input/output, are

  6. Computed torque control - Wikipedia

    en.wikipedia.org/wiki/Computed_torque_control

    Computed torque control is a control ... is the state vector of joint variables that describe the system , () is the ... and the normal methods for PID controller ...

  7. Closed-loop controller - Wikipedia

    en.wikipedia.org/wiki/Closed-loop_controller

    A block diagram of a PID controller in a feedback loop, r(t) is the desired process value or "set point", and y(t) is the measured process value. A proportional–integral–derivative controller (PID controller) is a control loop feedback mechanism control technique widely used in control systems.

  8. Control loop - Wikipedia

    en.wikipedia.org/wiki/Control_loop

    A control loop is the fundamental building block of control systems in general and industrial control systems in particular. It consists of the process sensor, the controller function, and the final control element (FCE) which controls the process necessary to automatically adjust the value of a measured process variable (PV) to equal the value of a desired set-point (SP).

  9. Open-loop controller - Wikipedia

    en.wikipedia.org/wiki/Open-loop_controller

    A feed back control system, such as a PID controller, can be improved by combining the feedback (or closed-loop control) of a PID controller with feed-forward (or open-loop) control. Knowledge about the system (such as the desired acceleration and inertia) can be fed forward and combined with the PID output to improve the overall system ...