Search results
Results from the WOW.Com Content Network
A spacecraft's attitude must typically be stabilized and controlled for a variety of reasons. It is often needed so that the spacecraft high-gain antenna may be accurately pointed to Earth for communications, so that onboard experiments may accomplish precise pointing for accurate collection and subsequent interpretation of data, so that the heating and cooling effects of sunlight and shadow ...
The suborbital X-15 and a companion training aero-spacecraft, the NF-104 AST, both intended to travel to an altitude that rendered their aerodynamic control surfaces unusable, established a convention for locations for thrusters on winged vehicles not intended to dock in space; that is, those that only have attitude control thrusters. Those for ...
Nonetheless, attitude control is often maintained in unpowered flight to keep the spacecraft in a fixed orientation for purposes of astronomical observation, communications, or for solar power generation; or to place it into a controlled spin for passive thermal control, or to create artificial gravity inside the craft.
Vernier thrusters are used when a heavy spacecraft requires a wide range of different thrust levels for attitude or velocity control, as for maneuvering during docking with other spacecraft. On space vehicles with two sizes of attitude control thrusters, the main ACS (Attitude Control System) thrusters are used for larger movements, while the ...
The objective of the CMG flight control system is to hold the space station at a fixed attitude relative to the surface of the Earth. In addition, it seeks a torque equilibrium attitude (TEA), in which the combined torque contribution of gravity gradient, atmospheric drag, solar pressure, and geomagnetic interactions are minimized. In the ...
The Orbit Attitude and Maneuvering System (OAMS) was a reaction control system used in Earth orbit by the Project Gemini spacecraft. It provided both automatic and manual rotation and translation by means of 16 vernier thrusters using hypergolic propellants.
The slew of 3-axis stabilized spacecraft is typically in closed loop control with thrusters or electrically-powered reaction wheels maintaining or altering the craft's attitude based on sensor measurements. A typical example is a space telescope that should be turned to observe a new celestial object.
A vernier thruster or gimbaled engine are particular cases used on launch vehicles where a secondary rocket engine or other high thrust device is used to control the attitude of the rocket, while the primary thrust engine (generally also a rocket engine) is fixed to the rocket and supplies the principal amount of thrust.