enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Queueing theory - Wikipedia

    en.wikipedia.org/wiki/Queueing_theory

    Queueing theory is the mathematical study of waiting lines, or queues. [1] A queueing model is constructed so that queue lengths and waiting time can be predicted. [1] Queueing theory is generally considered a branch of operations research because the results are often used when making business decisions about the resources needed to provide a ...

  3. Kendall's notation - Wikipedia

    en.wikipedia.org/wiki/Kendall's_notation

    Waiting queue at Ottawa station.. In queueing theory, a discipline within the mathematical theory of probability, Kendall's notation (or sometimes Kendall notation) is the standard system used to describe and classify a queueing node.

  4. Jackson network - Wikipedia

    en.wikipedia.org/wiki/Jackson_network

    In queueing theory, a discipline within the mathematical theory of probability, a Jackson network (sometimes Jacksonian network [1]) is a class of queueing network where the equilibrium distribution is particularly simple to compute as the network has a product-form solution.

  5. M/M/1 queue - Wikipedia

    en.wikipedia.org/wiki/M/M/1_queue

    An M/M/1 queueing node. In queueing theory, a discipline within the mathematical theory of probability, an M/M/1 queue represents the queue length in a system having a single server, where arrivals are determined by a Poisson process and job service times have an exponential distribution. The model name is written in Kendall's notation.

  6. Markovian arrival process - Wikipedia

    en.wikipedia.org/wiki/Markovian_arrival_process

    In queueing theory, a discipline within the mathematical theory of probability, a Markovian arrival process (MAP or MArP [1]) is a mathematical model for the time between job arrivals to a system. The simplest such process is a Poisson process where the time between each arrival is exponentially distributed .

  7. M/M/c queue - Wikipedia

    en.wikipedia.org/wiki/M/M/c_queue

    In queueing theory, a discipline within the mathematical theory of probability, the M/M/c queue (or Erlang–C model [1]: 495 ) is a multi-server queueing model. [2] In Kendall's notation it describes a system where arrivals form a single queue and are governed by a Poisson process, there are c servers, and job service times are exponentially distributed. [3]

  8. Burke's theorem - Wikipedia

    en.wikipedia.org/wiki/Burke's_theorem

    In queueing theory, a discipline within the mathematical theory of probability, Burke's theorem (sometimes the Burke's output theorem [1]) is a theorem (stated and demonstrated by Paul J. Burke while working at Bell Telephone Laboratories) asserting that, for the M/M/1 queue, M/M/c queue or M/M/∞ queue in the steady state with arrivals is a Poisson process with rate parameter λ:

  9. Queuing delay - Wikipedia

    en.wikipedia.org/wiki/Queuing_delay

    In Kendall's notation, the M/M/1/K queuing model, where K is the size of the buffer, may be used to analyze the queuing delay in a specific system. Kendall's notation should be used to calculate the queuing delay when packets are dropped from the queue. The M/M/1/K queuing model is the most basic and important queuing model for network analysis ...