Search results
Results from the WOW.Com Content Network
Altitude (or elevation) is usually not a thermodynamic property. Altitude can help specify the location of a system, but that does not describe the state of the system. An exception would be if the effect of gravity need to be considered in order to describe a state, in which case altitude could indeed be a thermodynamic property.
For quasi-static and reversible processes, the first law of thermodynamics is: d U = δ Q − δ W {\displaystyle dU=\delta Q-\delta W} where δQ is the heat supplied to the system and δW is the work done by the system.
Thermodynamic databases contain information about thermodynamic properties for substances, the most important being enthalpy, entropy, and Gibbs free energy.Numerical values of these thermodynamic properties are collected as tables or are calculated from thermodynamic datafiles.
The first and second law of thermodynamics are the most fundamental equations of thermodynamics. They may be combined into what is known as fundamental thermodynamic relation which describes all of the changes of thermodynamic state functions of a system of uniform temperature and pressure.
Pages in category "Thermodynamic properties" The following 60 pages are in this category, out of 60 total. This list may not reflect recent changes. A.
Table of specific heat capacities at 25 °C (298 K) unless otherwise noted. [citation needed] Notable minima and maxima are shown in maroon. Substance Phase Isobaric mass heat capacity c P J⋅g −1 ⋅K −1 Molar heat capacity, C P,m and C V,m J⋅mol −1 ⋅K −1 Isobaric volumetric heat capacity C P,v J⋅cm −3 ⋅K −1 Isochoric ...
All of the data were computed from data given in "Formulation of the Thermodynamic Properties of Ordinary Water Substance for Scientific and General Use" (IAPWS , 1984) (obsolete as of 1995). [22] This applies to: T – temperature in degrees Celsius; V – specific volume in cubic decimeters per kilogram (1 dm 3 is equivalent to 1 liter)
J.A. Dean (ed), Lange's Handbook of Chemistry (15th Edition), McGraw-Hill, 1999; Section 6, Thermodynamic Properties; Table 6.3, Enthalpies and Gibbs Energies of Formation, Entropies, and Heat Capacities of the Elements and Inorganic Compounds