Search results
Results from the WOW.Com Content Network
In functional and list-based languages a string is represented as a list (of character codes), therefore all list-manipulation procedures could be considered string functions. However such languages may implement a subset of explicit string-specific functions as well.
A string-searching algorithm, sometimes called string-matching algorithm, is an algorithm that searches a body of text for portions that match by pattern. A basic example of string searching is when the pattern and the searched text are arrays of elements of an alphabet ( finite set ) Σ.
The closeness of a match is measured in terms of the number of primitive operations necessary to convert the string into an exact match. This number is called the edit distance between the string and the pattern. The usual primitive operations are: [1] insertion: cot → coat; deletion: coat → cot
A requirement for a string metric (e.g. in contrast to string matching) is fulfillment of the triangle inequality. For example, the strings "Sam" and "Samuel" can be considered to be close. [1] A string metric provides a number indicating an algorithm-specific indication of distance.
Thus, to match "any amount of trailing characters", a new wildcard ___ is needed in contrast to _ that would match only a single character. In Haskell and functional programming languages in general, strings are represented as functional lists of characters. A functional list is defined as an empty list, or an element constructed on an existing ...
Searching for a value in a trie is guided by the characters in the search string key, as each node in the trie contains a corresponding link to each possible character in the given string. Thus, following the string within the trie yields the associated value for the given string key.
In computer science, the two-way string-matching algorithm is a string-searching algorithm, discovered by Maxime Crochemore and Dominique Perrin in 1991. [1] It takes a pattern of size m, called a “needle”, preprocesses it in linear time O(m), producing information that can then be used to search for the needle in any “haystack” string, taking only linear time O(n) with n being the ...
P denotes the string to be searched for, called the pattern. Its length is m. S[i] denotes the character at index i of string S, counting from 1. S[i..j] denotes the substring of string S starting at index i and ending at j, inclusive. A prefix of S is a substring S[1..i] for some i in range [1, l], where l is the length of S.