Search results
Results from the WOW.Com Content Network
However, the rhombohedral axes are often shown (for the rhombohedral lattice) in textbooks because this cell reveals the 3 m symmetry of the crystal lattice. The rhombohedral unit cell for the hexagonal Bravais lattice is the D-centered [ 1 ] cell, consisting of two additional lattice points which occupy one body diagonal of the unit cell with ...
Crystals can be classified in three ways: lattice systems, crystal systems and crystal families. The various classifications are often confused: in particular the trigonal crystal system is often confused with the rhombohedral lattice system, and the term "crystal system" is sometimes used to mean "lattice system" or "crystal family".
It can be used to define the rhombohedral lattice system, a honeycomb with rhombohedral cells. A rhombohedron has two opposite apices at which all face angles are equal; a prolate rhombohedron has this common angle acute, and an oblate rhombohedron has an obtuse angle at these vertices.
R rhombohedral; A reflection plane m within the point groups can be replaced by a glide plane, labeled as a, b, or c depending on which axis the glide is along. There is also the n glide, which is a glide along the half of a diagonal of a face, and the d glide, which is along a quarter of either a face or space diagonal of the unit cell.
The Bravais lattice of the space group is determined by the lattice system together with the initial letter of its name, which for the non-rhombohedral groups is P, I, F, A or C, standing for the principal, body centered, face centered, A-face centered or C-face centered lattices. There are seven rhombohedral space groups, with initial letter R.
In monoclinic, trigonal, tetragonal, and hexagonal systems there is one unique axis (sometimes called the principal axis) which has higher rotational symmetry than the other two axes. The basal plane is the plane perpendicular to the principal axis in these crystal systems.
Rhombohedral: R 3 m (No. 166) 105 (rh.) 315 (hex.) Partly due to its complexity, whether this structure is the ground state of Boron has not been fully settled. α-As: A7: Rhombohedral: R 3 m (No. 166) 2 (rh.) 6 (hex.) in grey metallic form, each As atom has 3 neighbours in the same sheet at 251.7pm; 3 in adjacent sheet at 312.0 pm. [18]
With hexagonal and rhombohedral lattice systems, it is possible to use the Bravais–Miller system, which uses four indices (h k i ℓ) that obey the constraint h + k + i = 0. Here h , k and ℓ are identical to the corresponding Miller indices, and i is a redundant index.