enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Inertial frame of reference - Wikipedia

    en.wikipedia.org/wiki/Inertial_frame_of_reference

    In classical physics and special relativity, an inertial frame of reference (also called an inertial space or a Galilean reference frame) is a frame of reference in which objects exhibit inertia: they remain at rest or in uniform motion relative to the frame until acted upon by external forces. In such a frame, the laws of nature can be ...

  3. Center-of-momentum frame - Wikipedia

    en.wikipedia.org/wiki/Center-of-momentum_frame

    The center of momentum frame is defined as the inertial frame in which the sum of the linear momenta of all particles is equal to 0. Let S denote the laboratory reference system and S′ denote the center-of-momentum reference frame. Using a Galilean transformation, the particle velocity in S′ is

  4. Postulates of special relativity - Wikipedia

    en.wikipedia.org/wiki/Postulates_of_special...

    1. First postulate (principle of relativity) The laws of physics take the same form in all inertial frames of reference.. 2. Second postulate (invariance of c) . As measured in any inertial frame of reference, light is always propagated in empty space with a definite velocity c that is independent of the state of motion of the emitting body.

  5. Quantum reference frame - Wikipedia

    en.wikipedia.org/wiki/Quantum_reference_frame

    An inertial reference frame (or inertial frame in short) is a frame in which all the physical laws hold. For instance, in a rotating reference frame, Newton's laws have to be modified because there is an extra Coriolis force (such frame is an example of non-inertial frame). Here, "rotating" means "rotating with respect to some inertial frame".

  6. Spacetime diagram - Wikipedia

    en.wikipedia.org/wiki/Spacetime_diagram

    In an inertial reference frame a free particle has a straight world line. In a non-inertial reference frame the world line of a free particle is curved. Take the example of the fall of an object dropped without initial velocity from a rocket. The rocket has a uniformly accelerated motion with respect to an inertial reference frame.

  7. Observer (special relativity) - Wikipedia

    en.wikipedia.org/wiki/Observer_(special_relativity)

    In special relativity, an observer is a frame of reference from which a set of objects or events are being measured. Usually this is an inertial reference frame or "inertial observer". Less often an observer may be an arbitrary non-inertial reference frame such as a Rindler frame which may be called an "accelerating observer".

  8. Coriolis force - Wikipedia

    en.wikipedia.org/wiki/Coriolis_force

    In the inertial frame of reference (upper part of the picture), the black ball moves in a straight line. However, the observer (red dot) who is standing in the rotating/non-inertial frame of reference (lower part of the picture) sees the object as following a curved path due to the Coriolis and centrifugal forces present in this frame.

  9. Preferred frame - Wikipedia

    en.wikipedia.org/wiki/Preferred_frame

    Although all inertial frames are equivalent under classical mechanics and special relativity, the set of all inertial frames is privileged over non-inertial frames in these theories. [ 1 ] : 10 Inertial frames are privileged because they do not have physics whose causes are outside of the system, while non-inertial frames do.