enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Inverse function rule - Wikipedia

    en.wikipedia.org/wiki/Inverse_function_rule

    This reflection operation turns the gradient of any line into its reciprocal. [ 1 ] Assuming that f {\displaystyle f} has an inverse in a neighbourhood of x {\displaystyle x} and that its derivative at that point is non-zero, its inverse is guaranteed to be differentiable at x {\displaystyle x} and have a derivative given by the above formula.

  3. Dihedral group of order 6 - Wikipedia

    en.wikipedia.org/wiki/Dihedral_group_of_order_6

    If x is a reflection point (0, 5, 10, 15, 20, or 25), its stabilizer is the group of order two containing the identity and the reflection in x. In other cases the stabilizer is the trivial group. For a fixed x in X, consider the map from G to X given by g ↦ g · x. The image of this map is the orbit of x and the coimage is the set of all left ...

  4. Schwarz reflection principle - Wikipedia

    en.wikipedia.org/wiki/Schwarz_reflection_principle

    In mathematics, the Schwarz reflection principle is a way to extend the domain of definition of a complex analytic function, i.e., it is a form of analytic continuation.It states that if an analytic function is defined on the upper half-plane, and has well-defined (non-singular) real values on the real axis, then it can be extended to the conjugate function on the lower half-plane.

  5. Involution (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Involution_(mathematics)

    Any involution is a bijection.. The identity map is a trivial example of an involution. Examples of nontrivial involutions include negation (x ↦ −x), reciprocation (x ↦ 1/x), and complex conjugation (z ↦ z) in arithmetic; reflection, half-turn rotation, and circle inversion in geometry; complementation in set theory; and reciprocal ciphers such as the ROT13 transformation and the ...

  6. Pseudoreflection - Wikipedia

    en.wikipedia.org/wiki/Pseudoreflection

    When K is the field of real numbers, a pseudoreflection has matrix form diag(1, ... , 1, -1). A pseudoreflection with such matrix form is called a real reflection.If the space on which this transformation acts admits a symmetric bilinear form so that orthogonality of vectors can be defined, then the transformation is a true reflection.

  7. Symmetry of second derivatives - Wikipedia

    en.wikipedia.org/wiki/Symmetry_of_second_derivatives

    That is, D i in a sense generates the one-parameter group of translations parallel to the x i-axis. These groups commute with each other, and therefore the infinitesimal generators do also; the Lie bracket [D i, D j] = 0. is this property's reflection. In other words, the Lie derivative of one coordinate with respect to another is zero.

  8. Bidirectional reflectance distribution function - Wikipedia

    en.wikipedia.org/wiki/Bidirectional_reflectance...

    Diagram showing vectors used to define the BRDF. All vectors are unit length. points toward the light source. points toward the viewer (camera). is the surface normal.. The bidirectional reflectance distribution function (BRDF), symbol (,), is a function of four real variables that defines how light from a source is reflected off an opaque surface. It is employed in the optics of real-world ...

  9. Glide reflection - Wikipedia

    en.wikipedia.org/wiki/Glide_reflection

    A typical example of glide reflection in everyday life would be the track of footprints left in the sand by a person walking on a beach. Frieze group nr. 6 (glide-reflections, translations and rotations) is generated by a glide reflection and a rotation about a point on the line of reflection. It is isomorphic to a semi-direct product of Z and C 2.