Search results
Results from the WOW.Com Content Network
A Manhattan plot is a type of plot, usually used to display data with a large number of data-points, many of non-zero amplitude, and with a distribution of higher-magnitude values. The plot is commonly used in genome-wide association studies (GWAS) to display significant SNPs .
After odds ratios and P-values have been calculated for all SNPs, a common approach is to create a Manhattan plot. In the context of GWA studies, this plot shows the negative logarithm of the P-value as a function of genomic location. Thus the SNPs with the most significant association stand out on the plot, usually as stacks of points because ...
The Manhattan plot is named as such as the statistically significant genes appear to show up as "skyscrapers" on the plot, and when there are many genes that are associated with the trait, the plot resembles the Manhattan skyline. Although the Manhattan plot image is for a GWAS study, TWAS results are shown the same way.
From the definition of ¯ as the average of the jackknife replicates one could try to calculate explicitly. The bias is a trivial calculation, but the variance of x ¯ j a c k {\displaystyle {\bar {x}}_{\mathrm {jack} }} is more involved since the jackknife replicates are not independent.
Fisher's exact test (also Fisher-Irwin test) is a statistical significance test used in the analysis of contingency tables. [1] [2] [3] Although in practice it is employed when sample sizes are small, it is valid for all sample sizes.
The concept was successfully applied in 2009 by researchers who organized a genome-wide association study (GWAS) regarding schizophrenia with the objective of constructing scores of risk propensity. That study was the first to use the term polygenic score for a prediction drawn from a linear combination of single-nucleotide polymorphism (SNP ...
The plot visualizes the differences between measurements taken in two samples, by transforming the data onto M (log ratio) and A (mean average) scales, then plotting these values. Though originally applied in the context of two channel DNA microarray gene expression data, MA plots are also used to visualise high-throughput sequencing analysis ...
[2] [3] [4] It is a complementary approach to the genome-wide association study, or GWAS, methodology. [5] A fundamental difference between GWAS and PheWAS designs is the direction of inference: in a PheWAS it is from exposure (the DNA variant) to many possible outcomes, that is, from SNPs to differences in phenotypes and disease risk.