Search results
Results from the WOW.Com Content Network
A sample space is usually denoted using set notation, and the possible ordered outcomes, or sample points, [5] are listed as elements in the set. It is common to refer to a sample space by the labels S, Ω, or U (for "universal set"). The elements of a sample space may be numbers, words, letters, or symbols.
Sample sizes may be evaluated by the quality of the resulting estimates, as follows. It is usually determined on the basis of the cost, time or convenience of data collection and the need for sufficient statistical power. For example, if a proportion is being estimated, one may wish to have the 95% confidence interval be
For example, an interviewer may be told to sample 200 females and 300 males between the age of 45 and 60. It is this second step which makes the technique one of non-probability sampling. In quota sampling the selection of the sample is non-random. For example, interviewers might be tempted to interview those who look most helpful.
A common example is the conversion of a sound wave to a sequence of "samples". A sample is a value of the signal at a point in time and/or space; this definition differs from the term's usage in statistics, which refers to a set of such values. [A] A sampler is a subsystem or operation that extracts samples from a continuous signal.
An example of the first resample might look like this X 1 * = x 2, x 1, x 10, x 10, x 3, x 4, x 6, x 7, x 1, x 9. There are some duplicates since a bootstrap resample comes from sampling with replacement from the data. Also the number of data points in a bootstrap resample is equal to the number of data points in our original observations.
This leads to different choices of sample space. The σ-algebra is a collection of all the events we would like to consider. This collection may or may not include each of the elementary events. Here, an "event" is a set of zero or more outcomes; that is, a subset of the sample space. An event is considered to have "happened" during an ...
The feature space for the minority class for which we want to oversample could be beak length, wingspan, and weight (all continuous). To then oversample, take a sample from the dataset, and consider its k nearest neighbors (in feature space). To create a synthetic data point, take the vector between one of those k neighbors, and the current ...
In geology, a rock composed of different minerals may be a compositional data point in a sample of rocks; a rock of which 10% is the first mineral, 30% is the second, and the remaining 60% is the third would correspond to the triple [0.1, 0.3, 0.6]. A data set would contain one such triple for each rock in a sample of rocks.