enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Row and column vectors - Wikipedia

    en.wikipedia.org/wiki/Row_and_column_vectors

    The set of all row vectors with n entries in a given field (such as the real numbers) forms an n-dimensional vector space; similarly, the set of all column vectors with m entries forms an m-dimensional vector space. The space of row vectors with n entries can be regarded as the dual space of the space of column vectors with n entries, since any ...

  3. Row and column spaces - Wikipedia

    en.wikipedia.org/wiki/Row_and_column_spaces

    The row space is defined similarly. The row space and the column space of a matrix A are sometimes denoted as C(A T) and C(A) respectively. [2] This article considers matrices of real numbers. The row and column spaces are subspaces of the real spaces and respectively. [3]

  4. Matrix (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Matrix_(mathematics)

    For example, a 2,1 represents the element at the second row and first column of the matrix. In mathematics, a matrix (pl.: matrices) is a rectangular array or table of numbers, symbols, or expressions, with elements or entries arranged in rows and columns, which is used to represent a mathematical object or property of such an object.

  5. Rotation matrix - Wikipedia

    en.wikipedia.org/wiki/Rotation_matrix

    To obtain exactly the same rotation (i.e. the same final coordinates of point P), the equivalent row vector must be post-multiplied by the transpose of R (i.e. wR T). Right- or left-handed coordinates The matrix and the vector can be represented with respect to a right-handed or left-handed coordinate system. Throughout the article, we assumed ...

  6. Orthogonal transformation - Wikipedia

    en.wikipedia.org/wiki/Orthogonal_transformation

    Reflections are transformations that reverse the direction front to back, orthogonal to the mirror plane, like (real-world) mirrors do. The matrices corresponding to proper rotations (without reflection) have a determinant of +1. Transformations with reflection are represented by matrices with a determinant of −1.

  7. Affine transformation - Wikipedia

    en.wikipedia.org/wiki/Affine_transformation

    Let X be an affine space over a field k, and V be its associated vector space. An affine transformation is a bijection f from X onto itself that is an affine map; this means that a linear map g from V to V is well defined by the equation () = (); here, as usual, the subtraction of two points denotes the free vector from the second point to the first one, and "well-defined" means that ...

  8. Transformation matrix - Wikipedia

    en.wikipedia.org/wiki/Transformation_matrix

    If the 4th component of the vector is 0 instead of 1, then only the vector's direction is reflected and its magnitude remains unchanged, as if it were mirrored through a parallel plane that passes through the origin. This is a useful property as it allows the transformation of both positional vectors and normal vectors with the same matrix.

  9. Covariance and contravariance of vectors - Wikipedia

    en.wikipedia.org/wiki/Covariance_and_contra...

    The magnitude of a vector (such as distance) is another example of an invariant, because it remains fixed even if geometrical vector components vary. (For example, for a position vector of length meters, if all Cartesian basis vectors are changed from meters in length to meters in length, the length of the position vector remains unchanged at ...