Search results
Results from the WOW.Com Content Network
Cocaine also blocks the serotonin transporter and norepinephrine transporter, inhibiting reuptake of serotonin and norepinephrine from the synaptic cleft into the pre-synaptic axon terminal and increasing activation of serotonin receptors and norepinephrine receptors in the post-synaptic neuron, contributing to the mental and physical effects ...
Chemical structure of cocaine. The biosynthesis of cocaine has long attracted the attention of biochemists and organic chemists. This interest is partly motivated by the strong physiological effects of cocaine, but a further incentive was the unusual bicyclic structure of the molecule. The biosynthesis can be viewed as occurring in two phases ...
These chemicals inhibit the action of DAT and, to a lesser extent, the other monoamine transporters, but their effects are mediated by separate mechanisms. Monoamine transporters are established targets for many pharmacological agents that affect brain function, including the psychostimulants cocaine and amphetamine. Cocaine and amphetamine ...
Cocaine is a relatively "balanced" inhibitor, although facilitation of dopaminergic neurotransmission is what has been linked to the reinforcing and addictive effects. In addition, cocaine has some serious limitations in terms of its cardiotoxicity [194] due to its local anesthetic activity. Thousands of cocaine users are admitted to emergency ...
Axon terminals (also called terminal boutons, synaptic boutons, end-feet, or presynaptic terminals) are distal terminations of the branches of an axon. An axon, also called a nerve fiber, is a long, slender projection of a nerve cell that conducts electrical impulses called action potentials away from the neuron's cell body to transmit those ...
How does pink cocaine affect someone? It can be hard to determine how the drug cocktail may affect someone after ingesting it. WebMD said this is due to several factors: the types of drugs mixed ...
Axonal transport, also called axoplasmic transport or axoplasmic flow, is a cellular process responsible for movement of mitochondria, lipids, synaptic vesicles, proteins, and other organelles to and from a neuron's cell body, through the cytoplasm of its axon called the axoplasm. [1]
For premium support please call: 800-290-4726 more ways to reach us