Search results
Results from the WOW.Com Content Network
The unit of activity is the becquerel (symbol Bq), which is defined equivalent to reciprocal seconds (symbol s −1). The older, non-SI unit of activity is the curie (Ci), which is 3.7 × 10 10 radioactive decays per second. Another unit of activity is the rutherford, which is defined as 1 × 10 6 radioactive decays per second.
The decay correct might be used this way: a group of 20 animals is injected with a compound of interest on a Monday at 10:00 a.m. The compound is chemically joined to the isotope copper-64, which has a known half-life of 12.7 hours, or 764 minutes.
A material containing unstable nuclei is considered radioactive. Three of the most common types of decay are alpha, beta, and gamma decay. The weak force is the mechanism that is responsible for beta decay, while the other two are governed by the electromagnetic and nuclear forces. [1] Radioactive decay is a random process at the level of ...
1 Bq = 1 s −1. A special name was introduced for the reciprocal second (s −1) to represent radioactivity to avoid potentially dangerous mistakes with prefixes.For example, 1 μs −1 would mean 10 6 disintegrations per second: (10 −6 s) −1 = 10 6 s −1, [4] whereas 1 μBq would mean 1 disintegration per 1 million seconds.
The activity of a sample decreases with time because of decay. The rules of radioactive decay may be used to convert activity to an actual number of atoms. They state that 1 Ci of radioactive atoms would follow the expression N (atoms) × λ (s −1) = 1 Ci = 3.7 × 10 10 Bq, and so N = 3.7 × 10 10 Bq / λ, where λ is the decay constant in s ...
Quantity (common name/s) (Common) symbol/s Defining equation SI units Dimension Number of atoms N = Number of atoms remaining at time t. N 0 = Initial number of atoms at time t = 0
Half-life (symbol t ½) is the time required for a quantity (of substance) to reduce to half of its initial value.The term is commonly used in nuclear physics to describe how quickly unstable atoms undergo radioactive decay or how long stable atoms survive.
Types of radioactive decay include gamma ray; beta decay (decay energy is divided between the emitted electron and the neutrino which is emitted at the same time) alpha decay; The decay energy is the mass difference Δm between the parent and the daughter atom and particles. It is equal to the energy of radiation E.