Search results
Results from the WOW.Com Content Network
A sample space is usually denoted using set notation, and the possible ordered outcomes, or sample points, [5] are listed as elements in the set. It is common to refer to a sample space by the labels S, Ω, or U (for "universal set"). The elements of a sample space may be numbers, words, letters, or symbols.
An event space, , which is a set of events, where an event is a subset of outcomes in the sample space. A probability function , P {\displaystyle P} , which assigns, to each event in the event space, a probability , which is a number between 0 and 1 (inclusive).
A random experiment is described or modeled by a mathematical construct known as a probability space. A probability space is constructed and defined with a specific kind of experiment or trial in mind. A mathematical description of an experiment consists of three parts: A sample space, Ω (or S), which is the set of all possible outcomes.
A simple example is the tossing of a fair (unbiased) coin. Since the coin is fair, the two outcomes ("heads" and "tails") are both equally probable; the probability of "heads" equals the probability of "tails"; and since no other outcomes are possible, the probability of either "heads" or "tails" is 1/2 (which could also be written as 0.5 or 50%).
Modern definition: The modern definition starts with a finite or countable set called the sample space, which relates to the set of all possible outcomes in classical sense, denoted by . It is then assumed that for each element x ∈ Ω {\displaystyle x\in \Omega \,} , an intrinsic "probability" value f ( x ) {\displaystyle f(x)\,} is attached ...
The sample space may be any set: a set of real numbers, a set of descriptive labels, a set of vectors, a set of arbitrary non-numerical values, etc. For example, the sample space of a coin flip could be Ω = {"heads", "tails" }. To define probability distributions for the specific case of random variables (so the sample space can be seen as a ...
A random variable is a measurable function: from a sample space as a set of possible outcomes to a measurable space.The technical axiomatic definition requires the sample space to belong to a probability triple (,,) (see the measure-theoretic definition).
In probability theory, an elementary event, also called an atomic event or sample point, is an event which contains only a single outcome in the sample space. [1] Using set theory terminology, an elementary event is a singleton. Elementary events and their corresponding outcomes are often written interchangeably for simplicity, as such an event ...