Search results
Results from the WOW.Com Content Network
Each curve in this example is a locus defined as the conchoid of the point P and the line l.In this example, P is 8 cm from l. In geometry, a locus (plural: loci) (Latin word for "place", "location") is a set of all points (commonly, a line, a line segment, a curve or a surface), whose location satisfies or is determined by one or more specified conditions.
Archimedes Geo3D is a shareware program designed for 3D geometric constructions. It extends traditional ruler and compass constructions into 3D space, allowing users to work with elements such as points, lines, circles, planes, spheres, vectors, and loci. This software is compatible with Windows, macOS, and Linux platforms.
The General Certificate of Secondary Education (GCSE) is an academic qualification in a range of subjects taken in England, Wales, and Northern Ireland, having been introduced in September 1986 and its first exams taken in 1988.
Using a markable ruler, regular polygons with solid constructions, like the heptagon, are constructible; and John H. Conway and Richard K. Guy give constructions for several of them. [20] The neusis construction is more powerful than a conic drawing tool, as one can construct complex numbers that do not have solid constructions.
Universal constructions are functorial in nature: if one can carry out the construction for every object in a category C then one obtains a functor on C. Furthermore, this functor is a right or left adjoint to the functor U used in the definition of the universal property. [2] Universal properties occur everywhere in mathematics.
First consider the theorem that there are an infinitude of prime numbers. Euclid's proof is constructive. But a common way of simplifying Euclid's proof postulates that, contrary to the assertion in the theorem, there are only a finite number of them, in which case there is a largest one, denoted n.
The result was originally published by Georg Mohr in 1672, [2] but his proof languished in obscurity until 1928. [3] [4] [5] The theorem was independently discovered by Lorenzo Mascheroni in 1797 and it was known as Mascheroni's Theorem until Mohr's work was rediscovered.
A neusis construction might be performed by means of a marked ruler that is rotatable around the point P (this may be done by putting a pin into the point P and then pressing the ruler against the pin). In the figure one end of the ruler is marked with a yellow eye with crosshairs: this is the origin of the scale division on the ruler.